Quantenausbeute

Die Quantenausbeute (auch Quanteneffizienz oder Quantenwirkungsgrad[1]; oder im speziellen Fall Fluoreszenzausbeute) gibt das Verhältnis zwischen beteiligten Lichtquanten bei einem resultierenden Ereignis (etwa Lichtabsorption, Fluoreszenzemission, eine photochemische Reaktion eines Moleküls, eine Rekombination von Ladungsträgerpaaren usw.) und dem auslösenden Ereignis (wie die Gesamtheit der dafür zur Verfügung gestandenen Photonen) an. Die Quantenausbeute ist üblicherweise .

In der Fluoreszenzspektroskopie gibt die Quantenausbeute eines Fluorophors das Verhältnis zwischen der Anzahl der emittierten und absorbierten Photonen an. Die Differenz bildet der dazu in Konkurrenz stehende Auger-Effekt. Das Verhältnis von erzeugten Löchern zu erzeugten Photonen bezeichnet man auch als Fluoreszenzausbeute (engl. fluorescence yield). Die Fluoreszenzausbeute wird üblicherweise einer der ursprünglichen Ionisation entsprechenden Schale zugeordnet und ist somit stets kleiner oder gleich Eins. Die gesamte Fluoreszenzausbeute (Summe über alle Schalen bei Kaskadeneffekten) kann in der Konsequenz also auch größer als Eins werden.

Bei Detektoren für Photonen (Photomultiplier; Halbleiterdetektoren wie z. B. Photodioden und CCDs) gibt die Quantenausbeute an, mit welcher Wahrscheinlichkeit ein Elektron durch den photoelektrischen Effekt freigesetzt wird und damit das Photon detektiert werden kann. Bei Solarzellen ist die Quantenausbeute für die Energieausbeute entscheidend. Die Quantenausbeute ist jeweils abhängig von der Wellenlänge bzw. Frequenz.

Die Quantenausbeute ist auch ein Maß für die Ergiebigkeit einer Photoreaktion[2]. Bei durch Licht induzierten chemischen Reaktionen ist die Quantenausbeute die Anzahl umgesetzter Moleküle pro Anzahl absorbierter Photonen. Hierbei ist die Quantenausbeute von der Energie des Photons und somit von der Wellenlänge des Lichts (bzw. der elektromagnetischen Strahlung) abhängig. Bei Kettenreaktionen (z. B. Photopolymerisationsreaktionen) kann sie sekundär größer eins werden.

  1. Quantenwirkungsgrad
  2. Eberhard Breitmaier, Günther Jung: Organische Chemie. Georg Thieme Verlag, 2005, ISBN 978-3-135-41505-5, S. 554 (eingeschränkte Vorschau in der Google-Buchsuche).

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search