Elektron

Elektron (e)

Klassifikation
Elementarteilchen
Fermion
Lepton
Eigenschaften[1]
elektrische Ladung −1 e
-1.602176634e-19[2] C
Masse 5.485799090441(97)e-4 u
9.1093837139(28)e-31 kg
Ruheenergie 0.51099895069(16) MeV
quadratischer
Ladungsradius
−0,1155(17) fm2
Compton-Wellenlänge 2.42631023538(76)e-12 m
magnetisches Moment -9.2847646917(29)e-24 J/T
-1.00115965218046(18) μB
g-Faktor -2.00231930436092(18)
gyromagnetisches
Verhältnis
1.76085962784(55)e11 rad·s−1·T−1
Spin ½
mittlere Lebensdauer stabil
Wechselwirkungen schwach
elektromagnetisch
Gravitation

Das Elektron (IPA: [ˈeːlɛktrɔn][3], ; von altgriechisch ἤλεκτρον élektronBernstein“) ist ein negativ geladenes stabiles Elementarteilchen. Sein Symbol ist e.

Elektronen sind Bestandteile von Atomen und damit von jeder Art gewöhnlicher Materie. Sie sind an den Atomkern gebunden und bilden die Elektronenhülle des Atoms. Die gesamte Chemie beruht im Wesentlichen auf den Eigenschaften und Wechselwirkungen dieser gebundenen Elektronen.

In Metallen ist ein Teil der Elektronen nahezu frei beweglich und bewirkt die hohe elektrische Leitfähigkeit metallischer Leiter. Dies ist die Grundlage der Elektrotechnik und der Elektronik. In Halbleitern ist die Zahl der beweglichen Elektronen und damit die elektrische Leitfähigkeit leicht zu beeinflussen, sowohl durch die Herstellung des Materials als auch später durch äußere Einflüsse wie Temperatur, elektrische Spannung, Lichteinfall etc. Dies ist die Grundlage der Halbleiterelektronik.

Aus jedem Material können bei starker Erhitzung oder durch Anlegen eines starken elektrischen Feldes Elektronen austreten (Glühemission, Feldemission). Als freie Elektronen können sie dann im Vakuum durch weitere Beschleunigung und Fokussierung zu einem Elektronenstrahl geformt werden. Dies hat die Entwicklung der Bildröhre (CRT) für Oszilloskope, Fernseher und Computermonitore ermöglicht. Weitere Anwendungen freier Elektronen sind z. B. die Röntgenröhre, das Elektronenmikroskop, das Elektronenstrahlschweißen, physikalische Grundlagenforschung mittels Teilchenbeschleunigern und die Erzeugung von Synchrotronstrahlung für Forschung und Technik.

In der β-Radioaktivität wird beim Beta-Minus-Zerfall eines Atomkerns ein Elektron neu erzeugt und ausgesandt.

Der experimentelle Nachweis des Elektrons gelang erstmals Emil Wiechert[4] im Jahre 1897 und wenig später Joseph John Thomson.[5]

  1. Referenzfehler: Ungültiges <ref>-Tag; kein Text angegeben für Einzelnachweis mit dem Namen CODATA.
  2. Referenzfehler: Ungültiges <ref>-Tag; kein Text angegeben für Einzelnachweis mit dem Namen C-def.
  3. Referenzfehler: Ungültiges <ref>-Tag; kein Text angegeben für Einzelnachweis mit dem Namen Kleiner-et-al.
  4. H. Rechenberg: The electron in physics – selection from a chronology of the last 100 years. In: European Journal of Physics. Band 18.3, 1997, S. 145.
  5. J.J. Thomson: Cathode Rays. In: Philosophical Magazine. Band 44, 1897, S. 293 (Online – J. J. Thomson (1856–1940): Cathode Rays).

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search