Almost surely

In probability theory, an event is said to happen almost surely (sometimes abbreviated as a.s.) if it happens with probability 1 (with respect to the probability measure).[1] In other words, the set of outcomes on which the event does not occur has probability 0, even though the set might not be empty. The concept is analogous to the concept of "almost everywhere" in measure theory. In probability experiments on a finite sample space with a non-zero probability for each outcome, there is no difference between almost surely and surely (since having a probability of 1 entails including all the sample points); however, this distinction becomes important when the sample space is an infinite set,[2] because an infinite set can have non-empty subsets of probability 0.

Some examples of the use of this concept include the strong and uniform versions of the law of large numbers, the continuity of the paths of Brownian motion, and the infinite monkey theorem. The terms almost certainly (a.c.) and almost always (a.a.) are also used. Almost never describes the opposite of almost surely: an event that happens with probability zero happens almost never.[3]

  1. ^ Weisstein, Eric W. "Almost Surely". mathworld.wolfram.com. Retrieved 2019-11-16.
  2. ^ "Almost surely - Math Central". mathcentral.uregina.ca. Retrieved 2019-11-16.
  3. ^ Grädel, Erich; Kolaitis, Phokion G.; Libkin, Leonid; Marx, Maarten; Spencer, Joel; Vardi, Moshe Y.; Venema, Yde; Weinstein, Scott (2007). Finite Model Theory and Its Applications. Springer. p. 232. ISBN 978-3-540-00428-8.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search