Antiparallelogram

An anti­parallelogram

In geometry, an antiparallelogram is a type of self-crossing quadrilateral. Like a parallelogram, an antiparallelogram has two opposite pairs of equal-length sides, but these pairs of sides are not in general parallel. Instead, each pair of sides is antiparallel with respect to the other, with sides in the longer pair crossing each other as in a scissors mechanism. Whereas a parallelogram's opposite angles are equal and oriented the same way, an antiparallelogram's are equal but oppositely oriented. Antiparallelograms are also called contraparallelograms[1] or crossed parallelograms.[2]

Antiparallelograms occur as the vertex figures of certain nonconvex uniform polyhedra. In the theory of four-bar linkages, the linkages with the form of an antiparallelogram are also called butterfly linkages or bow-tie linkages, and are used in the design of non-circular gears. In celestial mechanics, they occur in certain families of solutions to the 4-body problem.

Every antiparallelogram has an axis of symmetry, with all four vertices on a circle. It can be formed from an isosceles trapezoid by adding the two diagonals and removing two parallel sides. The signed area of every antiparallelogram is zero.

  1. ^ Cite error: The named reference gfa was invoked but never defined (see the help page).
  2. ^ Cite error: The named reference round was invoked but never defined (see the help page).

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search