Arctic methane emissions

Arctic methane concentrations in the atmosphere up to September 2020. A peak of 1988 parts per billion was reached in October 2019.

Arctic methane release is the release of methane from Arctic ocean floors, lake bottoms, wetlands and soils in permafrost regions of the Arctic. While it is a long-term natural process, methane release is exacerbated by global warming. This results in a positive climate change feedback (meaning one that amplifies warming), as methane is a powerful greenhouse gas.[1][2] The Arctic region is one of many natural sources of methane.[3] Climate change could accelerate methane release in the Arctic, due to the release of methane from existing stores, and from methanogenesis in rotting biomass.[4] When permafrost thaws as a consequence of warming, large amounts of organic material can become available for methanogenesis and may ultimately be released as methane.[5]

Large quantities of methane are stored in the Arctic in natural gas deposits and as methane clathrates under sediments on the ocean floors. Clathrates also degrade on warming and release methane directly.[6][7][8]

Atmospheric methane concentrations are 8–10% higher in the Arctic than in the Antarctic atmosphere. During cold glacier epochs, this gradient decreases to insignificant levels.[9] Land ecosystems are thought to be the main sources of this asymmetry, although it has been suggested in 2007 that "the role of the Arctic Ocean is significantly underestimated."[10] Soil temperature and moisture levels are important variables in soil methane fluxes in tundra environments.[11][12]

Mitigation of CO2 emissions by 2050 (ie reaching net zero emissions) is probably not enough to stop the future disappearance of summer Arctic Ocean ice cover. Mitigation of methane emissions is also necessary and this has to be carried out over an even shorter period of time.[13] Mitigation of methane emissions from human activities needs to be carried out within three sectors: oil and gas, waste and agriculture. Using available measures this would amount to global reductions of ca.180 Mt/yr or about 45% of the current (2021) emissions by 2030.[14]

  1. ^ Cheng, Chin-Hsien; Redfern, Simon A. T. (23 June 2022). "Impact of interannual and multidecadal trends on methane-climate feedbacks and sensitivity". Nature Communications. 13 (1): 3592. Bibcode:2022NatCo..13.3592C. doi:10.1038/s41467-022-31345-w. PMC 9226131. PMID 35739128.
  2. ^ Christensen, Torben Røjle; Arora, Vivek K.; Gauss, Michael; Höglund-Isaksson, Lena; Parmentier, Frans-Jan W. (4 February 2019). "Christensen". Scientific Reports. 9 (1): 1146. doi:10.1038/s41598-018-37719-9. PMC 6362017. PMID 30718695.
  3. ^ Bloom, A. A.; Palmer, P. I.; Fraser, A.; Reay, D. S.; Frankenberg, C. (2010). "Large-Scale Controls of Methanogenesis Inferred from Methane and Gravity Spaceborne Data" (PDF). Science. 327 (5963): 322–325. Bibcode:2010Sci...327..322B. doi:10.1126/science.1175176. PMID 20075250. S2CID 28268515. Archived (PDF) from the original on 2018-07-22. Retrieved 2019-12-03.
  4. ^ Walter, K. M.; Chanton, J. P.; Chapin, F. S.; Schuur, E. A. G.; Zimov, S. A. (2008). "Methane production and bubble emissions from arctic lakes: Isotopic implications for source pathways and ages". Journal of Geophysical Research. 113 (G3): G00A08. Bibcode:2008JGRG..113.0A08W. doi:10.1029/2007JG000569.
  5. ^ Zimov, Sa; Schuur, Ea; Chapin, Fs 3Rd (Jun 2006). "Climate change. Permafrost and the global carbon budget". Science. 312 (5780): 1612–3. doi:10.1126/science.1128908. ISSN 0036-8075. PMID 16778046. S2CID 129667039.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  6. ^ Shakhova, Natalia (2005). "The distribution of methane on the Siberian Arctic shelves: Implications for the marine methane cycle". Geophysical Research Letters. 32 (9): L09601. Bibcode:2005GeoRL..32.9601S. doi:10.1029/2005GL022751.
  7. ^ Shakhova, Natalia; Semiletov, Igor (2007). "Methane release and coastal environment in the East Siberian Arctic shelf". Journal of Marine Systems. 66 (1–4): 227–243. Bibcode:2007JMS....66..227S. CiteSeerX 10.1.1.371.4677. doi:10.1016/j.jmarsys.2006.06.006.
  8. ^ Sayedi, Sayedeh Sara; Abbott, Benjamin W; Thornton, Brett F; Frederick, Jennifer M; Vonk, Jorien E; Overduin, Paul; Schädel, Christina; Schuur, Edward A G; Bourbonnais, Annie; Demidov, Nikita; Gavrilov, Anatoly (2020-12-01). "Subsea permafrost carbon stocks and climate change sensitivity estimated by expert assessment". Environmental Research Letters. 15 (12): B027-08. Bibcode:2020AGUFMB027...08S. doi:10.1088/1748-9326/abcc29. hdl:10852/83674. ISSN 1748-9326.
  9. ^ IPCC, 2001: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [Houghton, J.T., Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, and C.A. Johnson (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 881pp.
  10. ^ N. E. Shakhova; I. P. Semiletov; A. N. Salyuk; N. N. Bel'cheva; D. A. Kosmach (2007). "Methane Anomalies in the Near-Water Atmospheric Layer above the Shelf of East Siberian Arctic Shelf". Doklady Earth Sciences. 415 (5): 764–768. Bibcode:2007DokES.415..764S. doi:10.1134/S1028334X07050236. S2CID 129047326.
  11. ^ Torn, Margaret Susan; Chapin, F.Stuart (1993). "Environmental and biotic controls over methane flux from Arctic tundra". Chemosphere. 26 (1–4): 357–368. Bibcode:1993Chmsp..26..357T. doi:10.1016/0045-6535(93)90431-4.
  12. ^ Whalen, S. C.; Reeburgh, W. S. (1990). "Consumption of atmospheric methane by tundra soils". Nature. 346 (6280): 160–162. Bibcode:1990Natur.346..160W. doi:10.1038/346160a0. S2CID 4312042. Archived from the original on 2019-07-24. Retrieved 2019-06-28.
  13. ^ Cite error: The named reference :1 was invoked but never defined (see the help page).
  14. ^ Cite error: The named reference :0 was invoked but never defined (see the help page).

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search