Attosecond physics

High harmonic generation in krypton. This technology is one of the most used techniques to generate attosecond bursts of light.

Attosecond physics, also known as attophysics, or more generally attosecond science, is a branch of physics that deals with light-matter interaction phenomena wherein attosecond (10−18 s) photon pulses are used to unravel dynamical processes in matter with unprecedented time resolution.

Attosecond science mainly employs pump–probe spectroscopic methods to investigate the physical process of interest. Due to the complexity of this field of study, it generally requires a synergistic interplay between state-of-the-art experimental setup and advanced theoretical tools to interpret the data collected from attosecond experiments.[1]

The main interests of attosecond physics are:

  1. Atomic physics: investigation of electron correlation effects, photo-emission delay and ionization tunneling.[2]
  2. Molecular physics and molecular chemistry: role of electronic motion in molecular excited states (e.g. charge-transfer processes), light-induced photo-fragmentation, and light-induced electron transfer processes.[3]
  3. Solid-state physics: investigation of exciton dynamics in advanced 2D materials, petahertz charge carrier motion in solids, spin dynamics in ferromagnetic materials.[4]

One of the primary goals of attosecond science is to provide advanced insights into the quantum dynamics of electrons in atoms, molecules and solids with the long-term challenge of achieving real-time control of the electron motion in matter.[5]

The advent of broadband solid-state titanium-doped sapphire based (Ti:Sa) lasers (1986),[6] chirped pulse amplification (CPA)[7] (1988), spectral broadening of high-energy pulses[8] (e.g. gas-filled hollow-core fiber via self-phase modulation) (1996), mirror-dispersion-controlled technology (chirped mirrors)[9] (1994), and carrier envelop offset stabilization[10] (2000) had enabled the creation of isolated-attosecond light pulses (generated by the non-linear process of high harmonic generation in a noble gas)[11][12] (2004, 2006), which have given birth to the field of attosecond science.[13]

The current world record for the shortest light-pulse generated by human technology is 43 as.[14]

In 2022, Anne L'Huillier, Paul Corkum, Ferenc Krausz were awarded with the Wolf prize in physics for their pioneering contributions to ultrafast laser science and attosecond physics. This was followed by the 2023 Nobel Prize in Physics, where L'Huillier, Krausz and Pierre Agostini were rewarded “for experimental methods that generate attosecond pulses of light for the study of electron dynamics in matter.”

  1. ^ Krausz F, Ivanov M (February 2009). "Attosecond physics". Reviews of Modern Physics. 81 (1): 163–234. Bibcode:2009RvMP...81..163K. doi:10.1103/RevModPhys.81.163.
  2. ^ Schultze M, Fiess M, Karpowicz N, Gagnon J, Korbman M, Hofstetter M, et al. (June 2010). "Delay in photoemission" (PDF). Science. 328 (5986): 1658–62. Bibcode:2010Sci...328.1658S. doi:10.1126/science.1189401. PMID 20576884. S2CID 9984886.
  3. ^ Nisoli M, Decleva P, Calegari F, Palacios A, Martín F (August 2017). "Attosecond Electron Dynamics in Molecules" (PDF). Chemical Reviews. 117 (16): 10760–10825. doi:10.1021/acs.chemrev.6b00453. hdl:11311/1035707. PMID 28488433.
  4. ^ Ghimire S, Ndabashimiye G, DiChiara AD, Sistrunk E, Stockman MI, Agostini P, et al. (2014-10-08). "Strong-field and attosecond physics in solids". Journal of Physics B: Atomic, Molecular and Optical Physics. 47 (20): 204030. Bibcode:2014JPhB...47t4030G. doi:10.1088/0953-4075/47/20/204030. ISSN 0953-4075.
  5. ^ Agostini P, DiMauro LF (2004). "The physics of attosecond light pulses". Reports on Progress in Physics. 67 (6): 813–855. Bibcode:2004RPPh...67..813A. doi:10.1088/0034-4885/67/6/R01. S2CID 53399642.
  6. ^ Moulton PF (January 1986). "Spectroscopic and laser characteristics of Ti:Al_2O_3". Journal of the Optical Society of America B. 3 (1): 125. Bibcode:1986JOSAB...3..125M. doi:10.1364/josab.3.000125. ISSN 0740-3224.
  7. ^ Maine P, Strickland D, Pessot M, Squier J, Bado P, Mourou G, Harter D (1988). "Chirped Pulse Amplification: Present and Future". Ultrafast Phenomena VI. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 2–7. ISBN 978-3-642-83646-6.
  8. ^ Nisoli M, De Silvestri S, Svelto O (1996-05-13). "Generation of high energy 10 fs pulses by a new pulse compression technique". Applied Physics Letters. 68 (20): 2793–2795. Bibcode:1996ApPhL..68.2793N. doi:10.1063/1.116609. ISSN 0003-6951. S2CID 118273858.
  9. ^ Szipocs R, Ferencz K, Spielmann C, Krausz F (February 1994). "Chirped multilayer coatings for broadband dispersion control in femtosecond lasers". Optics Letters. 19 (3): 201. Bibcode:1994OptL...19..201S. doi:10.1364/ol.19.000201. PMID 19829591.
  10. ^ Baltuska A, Udem T, Uiberacker M, Hentschel M, Goulielmakis E, Gohle C, et al. (February 2003). "Attosecond control of electronic processes by intense light fields". Nature. 421 (6923): 611–5. Bibcode:2003Natur.421..611B. doi:10.1038/nature01414. PMID 12571590. S2CID 4404842.
  11. ^ Kienberger R, Goulielmakis E, Uiberacker M, Baltuska A, Yakovlev V, Bammer F, et al. (February 2004). "Atomic transient recorder". Nature. 427 (6977): 817–21. Bibcode:2004Natur.427..817K. doi:10.1038/nature02277. PMID 14985755. S2CID 4339323.
  12. ^ Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, et al. (October 2006). "Isolated single-cycle attosecond pulses". Science. 314 (5798): 443–6. Bibcode:2006Sci...314..443S. doi:10.1126/science.1132838. hdl:11577/1565991. PMID 17053142. S2CID 2351301.
  13. ^ Krausz F (2016-05-25). "The birth of attosecond physics and its coming of age". Physica Scripta. 91 (6): 063011. Bibcode:2016PhyS...91f3011K. doi:10.1088/0031-8949/91/6/063011. ISSN 0031-8949. S2CID 124590030.
  14. ^ Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Wörner HJ (October 2017). "Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver". Optics Express. 25 (22): 27506–27518. Bibcode:2017OExpr..2527506G. doi:10.1364/OE.25.027506. hdl:20.500.11850/211882. PMID 29092222.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search