Automatic differentiation

In mathematics and computer algebra, automatic differentiation (auto-differentiation, autodiff, or AD), also called algorithmic differentiation, computational differentiation, and differentiation arithmetic[1][2][3][4] is a set of techniques to evaluate the partial derivative of a function specified by a computer program. Automatic differentiation is a subtle and central tool to automatize the simultaneous computation of the numerical values of arbitrarily complex functions and their derivatives with no need for the symbolic representation of the derivative, only the function rule or an algorithm thereof is required.[3][4] Auto-differentiation is thus neither numeric nor symbolic, nor is it a combination of both. It is also preferable to ordinary numerical methods: In contrast to the more traditional numerical methods based on finite differences, auto-differentiation is 'in theory' exact, and in comparison to symbolic algorithms, it is computationally inexpensive.[5][3][6]

Automatic differentiation exploits the fact that every computer calculation, no matter how complicated, executes a sequence of elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, partial derivatives of arbitrary order can be computed automatically, accurately to working precision, and using at most a small constant factor of more arithmetic operations than the original program.

  1. ^ Neidinger, Richard D. (2010). "Introduction to Automatic Differentiation and MATLAB Object-Oriented Programming" (PDF). SIAM Review. 52 (3): 545–563. CiteSeerX 10.1.1.362.6580. doi:10.1137/080743627. S2CID 17134969.
  2. ^ Baydin, Atilim Gunes; Pearlmutter, Barak; Radul, Alexey Andreyevich; Siskind, Jeffrey (2018). "Automatic differentiation in machine learning: a survey". Journal of Machine Learning Research. 18: 1–43.
  3. ^ a b c Hend Dawood and Nefertiti Megahed (2023). Automatic differentiation of uncertainties: an interval computational differentiation for first and higher derivatives with implementation. PeerJ Computer Science 9:e1301 https://doi.org/10.7717/peerj-cs.1301.
  4. ^ a b Hend Dawood and Nefertiti Megahed (2019). A Consistent and Categorical Axiomatization of Differentiation Arithmetic Applicable to First and Higher Order Derivatives. Punjab University Journal of Mathematics. 51(11). pp. 77-100. doi: 10.5281/zenodo.3479546. http://doi.org/10.5281/zenodo.3479546.
  5. ^  This article incorporates text by Dawood and Megahed available under the CC BY-SA 4.0 license.
  6. ^ Hend Dawood and Yasser Dawood (2022). Interval Root Finding and Interval Polynomials: Methods and Applications in Science and Engineering. In S. Chakraverty, editor, Polynomial Paradigms: Trends and Applications in Science and Engineering, chapter 15. IOP Publishing. ISBN 978-0-7503-5065-5. doi: 10.1088/978-0-7503-5067-9ch15. URL https://doi.org/10.1088/978-0-7503-5067-9ch15.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search