Band bending

In solid-state physics, band bending refers to the process in which the electronic band structure in a material curves up or down near a junction or interface. It does not involve any physical (spatial) bending. When the electrochemical potential of the free charge carriers around an interface of a semiconductor is dissimilar, charge carriers are transferred between the two materials until an equilibrium state is reached whereby the potential difference vanishes.[1] The band bending concept was first developed in 1938 when Mott, Davidov and Schottky all published theories of the rectifying effect of metal-semiconductor contacts.[2][3] The use of semiconductor junctions sparked the computer revolution in 1990.[clarification needed] Devices such as the diode, the transistor, the photocell and many more still play an important role in technology.

  1. ^ Zhang, Zhen; Yates, John T. (10 October 2012). "Band Bending in Semiconductors: Chemical and Physical Consequences at Surfaces and Interfaces". Chemical Reviews. 112 (10): 5520–5551. doi:10.1021/cr3000626. PMID 22783915.
  2. ^ Just, Th. (April 1938). "G. W. Steller". Die Naturwissenschaften. 26 (14): 224. Bibcode:1938NW.....26..224J. doi:10.1007/BF01590290. S2CID 33381617.
  3. ^ Mott, N. F. (October 1938). "Note on the contact between a metal and an insulator or semi-conductor". Mathematical Proceedings of the Cambridge Philosophical Society. 34 (4): 568–572. Bibcode:1938PCPS...34..568M. doi:10.1017/S0305004100020570. S2CID 222602877.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search