Bioaugmentation

Biological augmentation is the addition of archaea or bacterial cultures required to speed up the rate of degradation of a contaminant.[1] Organisms that originate from contaminated areas may already be able to break down waste, but perhaps inefficiently and slowly.

Bioaugmentation is a type of bioremediation in which it requires studying the indigenous varieties present in the location to determine if biostimulation is possible. After discovering the indigenous bacteria found in the location, if the indigenous bacteria can metabolize the contaminants, more of the indigenous bacterial cultures will be implemented into the location to boost the degradation of the contaminants. Bioaugmentation is the introduction of more archaea or bacterial cultures to enhance the contaminant degradation whereas biostimulation is the addition of nutritional supplements for the indigenous bacteria to promote the bacterial metabolism. If the indigenous variety do not have the metabolic capability to perform the remediation process, exogenous varieties with such sophisticated pathways are introduced. The utilization of bioaugmentation provides advancement in the fields of microbial ecology and biology, immobilization, and bioreactor design.[2]

Bioaugmentation is commonly used in municipal wastewater treatment to restart activated sludge bioreactors. Most cultures available contain microbial cultures, already containing all necessary microorganisms (B. licheniformis, B. thuringiensis, P. polymyxa, B. stearothermophilus, Penicillium sp., Aspergillus sp., Flavobacterium, Arthrobacter, Pseudomonas, Streptomyces, Saccharomyces, etc.). Activated sludge systems are generally based on microorganisms like bacteria, protozoa, nematodes, rotifers, and fungi, which are capable of degrading biodegradable organic matter. There are many positive outcomes from the use of bioaugmentation, such as the improvement in efficiency and speed of the process of breaking down substances and the reduction of toxic particles in an area.[3]

  1. ^ Morganwalp, David W. "Scientists Discover Analog for Extraterrestrial Life in Idaho Hot Spring". toxics.usgs.gov. Archived from the original on 2021-04-21. Retrieved 2015-09-11.
  2. ^ Herrero, M; Stuckey, D.C. (2015). "Bioaugmentation and its application in wastewater treatment: A review". Chemosphere. 140: 119–128. Bibcode:2015Chmsp.140..119H. doi:10.1016/j.chemosphere.2014.10.033. hdl:10044/1/19478. PMID 25454204 – via Elsevier Science Direct.
  3. ^ Huban, C.M. [Betz-Dearborn Inc., and R.D. [Sybron Chemicals Plowman, "Bioaugmentation: Put Microbes to Work.” Chemical Engineering 104.3", (1997): n. pag. Print.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search