Biostratigraphy

Biostratigraphy is the branch of stratigraphy which focuses on correlating and assigning relative ages of rock strata by using the fossil assemblages contained within them.[1] The primary objective of biostratigraphy is correlation, demonstrating that a particular horizon in one geological section represents the same period of time as another horizon at a different section. Fossils within these strata are useful because sediments of the same age can look completely different, due to local variations in the sedimentary environment. For example, one section might have been made up of clays and marls, while another has more chalky limestones. However, if the fossil species recorded are similar, the two sediments are likely to have been laid down around the same time. Ideally these fossils are used to help identify biozones, as they make up the basic biostratigraphy units, and define geological time periods based upon the fossil species found within each section.

Basic concepts of biostratigraphic principles were introduced many centuries ago, going as far back as the early 1800s. A Danish scientist and bishop by the name of Nicolas Steno was one of the first geologists to recognize that rock layers correlate to the Law of Superposition. With advancements in science and technology, by the 18th century it began to be accepted that fossils were remains left by species that had become deceased and were then preserved within the rock record.[2] The method was well-established before Charles Darwin explained the mechanism behind it—evolution.[3] Scientists William Smith, George Cuvier, and Alexandre Brongniart came to the conclusion that fossils then indicated a series of chronological events, establishing layers of rock strata as some type of unit, later termed biozone.[4] From here on, scientists began relating the changes in strata and biozones to different geological eras, establishing boundaries and time periods within major faunal changes. By the late 18th century the Cambrian and Carboniferous periods were internationally recognized due to these findings. During the early 20th century, advancements in technology gave scientists the ability to study radioactive decay. Using this methodology, scientists were able to establish geological time, the boundaries of the different eras (Paleozoic, Mesozoic, Cenozoic), as well as Periods (Cambrian, Ordovician, Silurian) through the isotopes found within fossils via radioactive decay.[2] Current 21st century uses of biostratigraphy involve interpretations of age for rock layers, which are primarily used by oil and gas industries for drilling workflows and resource allocations.[5]

The first reef builder is a worldwide index fossil for the Lower Cambrian
  1. ^ Hine, Robert. "Biostratigraphy." Oxford Reference: Dictionary of Biology, 8th ed., Oxford University Press, 2019.
  2. ^ a b Gon, S. M. "Trilobite Biostratigraphy." Edited by Nicolas Tormo, Trilobite Biostratigraphy, 4 Sept. 2018, www.trilobites.info/biostratigraphy.htm
  3. ^ Gluyas, J. & Swarbrick, R. (2004) Petroleum Geoscience. Publ. Blackwell Publishing. pp. 80-82
  4. ^ Young, Keith (March 1960). "Biostratigraphy and the New Paleontology". Journal of Paleontology. 34: 347–348 – via JSTOR.
  5. ^ Simmons, Mike. (2019). ResearchGate, Biostratigraphy in Exploration. Retrieved March 5, 2020. URL: https://www.researchgate.net/publication/332188386_Biostratigraphy_in_Exploration

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search