Bulbous bow

A "ram" bulbous bow curves upwards from the bottom, and has a "knuckle" if the top is higher than the juncture with the hull—the through-tunnels in the side are bow thrusters.[1]

A bulbous bow is a streamlined flaring or protruding bulb at the bow (or front) of a ship just below the waterline. The flare or bulb modifies the way the water flows around the hull, reducing drag and thus increasing speed, range, fuel efficiency, and stability. Large ships with bulbous bows generally have twelve to fifteen percent better fuel efficiency than similar vessels without them.[2] A bulbous bow also increases the buoyancy of the forward part and hence reduces the pitching of the ship to a small degree.

Vessels with high kinetic energy, which is proportional to mass and the square of the velocity, benefit from having a bulbous bow that is designed for their operating speed; this includes vessels with high mass (e.g. supertankers) or a high service speed (e.g. passenger ships, and cargo ships).[3] Vessels of lower mass (less than 4,000 dwt) and those that operate at slower speeds (less than 12 kts) have a reduced benefit from bulbous bows, because of the eddies that occur in those cases;[3] examples include tugboats, powerboats, sailing vessels, and small yachts.

Bulbous bows have been found to be most effective when used on vessels that meet the following conditions:

  • The waterline length is longer than about 15 metres (49 ft).[4]
  • The bulb design is optimised for the vessel's operating speed.[5]
  1. ^ Chakraborty, Soumya (October 9, 2017). "What's The Importance Of Bulbous Bow Of Ships?". Marine Insight. Retrieved 2019-03-17.
  2. ^ Bray, Patrick J. (April 2005). "Bulbous bows". www.dieselduck.ca. Retrieved 2023-12-09.
  3. ^ a b Barrass, Bryan (2004-07-09). Ship Design and Performance for Masters and Mates. Elsevier. ISBN 9780080454948.
  4. ^ Wigley, W.C.S. (1936). The Theory of the Bulbous Bow and its Practical Application. Newcastle upon Tyne.
  5. ^ Bertram, Volker; Schneekluth, H. (1998-10-15). Ship Design for Efficiency and Economy. Elsevier. ISBN 9780080517100.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search