Charlotte Froese Fischer

Charlotte Froese Fischer
Fischer at EDSAC
Born
Charlotte Froese

(1929-09-21)September 21, 1929
Stara Mykolaivka, Donetsk, Ukraine
DiedFebruary 8, 2024(2024-02-08) (aged 94)
Maryland, U.S.
Alma materUniversity of British Columbia
University of Cambridge
Spouse
(m. 1967; died 2011)
AwardsSloan Research Fellowship
Fellow of the American Physical Society
Member, Royal Physiographic Society in Lund
Fulbright Senior Research Award
Foreign Member, Lithuanian Academy of Sciences
Honorary Doctorate, Malmö University
Fellow of the Royal Society of Canada
Honorary Doctorate, Western University
Scientific career
InstitutionsUniversity of British Columbia
Harvard College Observatory
Vanderbilt University
National Institute of Standards and Technology
Doctoral advisorDouglas Hartree

Charlotte Froese Fischer (September 21, 1929 – February 8, 2024) was a Canadian-American applied mathematician, computer scientist and physicist noted for the development and implementation of the Multi-Configurational Hartree–Fock (MCHF) approach to atomic-structure calculations and its application to the description of atomic structure and spectra.[1]

The experimental discovery of the negative ion of calcium[2] was motivated by her theoretical prediction of its existence.[3] This was the first known anion of a Group 2 element.[4][5] Its discovery was cited in Froese Fischer's election to Fellow of the American Physical Society.

  1. ^ Falk, Dan (March 28, 2024). "Scientist Charlotte Froese Fischer was considered the 'first lady of computational atomic structure theory'". The Globe and Mail. Retrieved April 16, 2024.
  2. ^ Pegg, D. J.; Thompson, J. S.; Compton, R. N.; Alton, G. D. (1987), "Evidence for a stable negative ion of calcium", Physical Review Letters, 59 (20): 2267–2270, Bibcode:1987PhRvL..59.2267P, doi:10.1103/PhysRevLett.59.2267, PMID 10035499
  3. ^ Froese Fischer, Charlotte; Lagowski, Jolanta B.; Vosko, S.H. (1987), "Ground States of Ca and Sc from Two Theoretical Points of View", Physical Review Letters, 59 (20): 2263–2266, Bibcode:1987PhRvL..59.2263F, doi:10.1103/PhysRevLett.59.2263, PMID 10035498
  4. ^ Buckman, Stephen J.; Clark, Charles W. (1994), "Atomic negative-ion resonances", Reviews of Modern Physics, 66 (2): 539–655, Bibcode:1994RvMP...66..539B, doi:10.1103/RevModPhys.66.539
  5. ^ Andersen, T.; Haugen, H. K.; Hotop, H. (1999), "Binding Energies in Atomic Negative Ions: III", Journal of Physical and Chemical Reference Data, 28 (6): 1511–1533, Bibcode:1999JPCRD..28.1511A, doi:10.1063/1.556047

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search