Complementarity (physics)

In physics, complementarity is a conceptual aspect of quantum mechanics that Niels Bohr regarded as an essential feature of the theory.[1][2] The complementarity principle holds that certain pairs of complementary properties cannot all be observed or measured simultaneously, for examples, position and momentum or wave and particle properties. In contemporary terms, complementarity encompasses both the uncertainty principle and wave-particle duality.

Bohr considered one of the foundational truths of quantum mechanics to be the fact that setting up an experiment to measure one quantity of a pair, for instance the position of an electron, excludes the possibility of measuring the other, yet understanding both experiments is necessary to characterize the object under study. In Bohr's view, the behavior of atomic and subatomic objects cannot be separated from the measuring instruments that create the context in which the measured objects behave. Consequently, there is no "single picture" that unifies the results obtained in these different experimental contexts, and only the "totality of the phenomena" together can provide a completely informative description.[3]

  1. ^ Wheeler, John A. (January 1963). ""No Fugitive and Cloistered Virtue"—A tribute to Niels Bohr". Physics Today. Vol. 16, no. 1. p. 30. Bibcode:1963PhT....16a..30W. doi:10.1063/1.3050711.
  2. ^ Howard, Don (2004). "Who invented the Copenhagen Interpretation? A study in mythology" (PDF). Philosophy of Science. 71 (5): 669–682. CiteSeerX 10.1.1.164.9141. doi:10.1086/425941. JSTOR 10.1086/425941. S2CID 9454552.
  3. ^ Bohr, Niels; Rosenfeld, Léon (1996). "Complementarity: Bedrock of the Quantal Description". Foundations of Quantum Physics II (1933–1958). Niels Bohr Collected Works. Vol. 7. Elsevier. pp. 284–285. ISBN 978-0-444-89892-0.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search