Complex logarithm

A single branch of the complex logarithm. The hue of the color is used to show the argument of the complex logarithm. The brightness of the color is used to show the modulus of the complex logarithm.
The real part of log(z) is the natural logarithm of |z|. Its graph is thus obtained by rotating the graph of ln(x) around the z-axis.

In mathematics, a complex logarithm is a generalization of the natural logarithm to nonzero complex numbers. The term refers to one of the following, which are strongly related:

  • A complex logarithm of a nonzero complex number , defined to be any complex number for which .[1][2] Such a number is denoted by .[1] If is given in polar form as , where and are real numbers with , then is one logarithm of , and all the complex logarithms of are exactly the numbers of the form for integers .[1][2] These logarithms are equally spaced along a vertical line in the complex plane.
  • A complex-valued function , defined on some subset of the set of nonzero complex numbers, satisfying for all in . Such complex logarithm functions are analogous to the real logarithm function , which is the inverse of the real exponential function and hence satisfies eln x = x for all positive real numbers x. Complex logarithm functions can be constructed by explicit formulas involving real-valued functions, by integration of , or by the process of analytic continuation.

There is no continuous complex logarithm function defined on all of . Ways of dealing with this include branches, the associated Riemann surface, and partial inverses of the complex exponential function. The principal value defines a particular complex logarithm function that is continuous except along the negative real axis; on the complex plane with the negative real numbers and 0 removed, it is the analytic continuation of the (real) natural logarithm.

  1. ^ a b c Ahlfors, Section 3.4.
  2. ^ a b Sarason, Section IV.9.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search