Uniform distribution on an interval
Continuous uniform |
---|
Probability density function  Using maximum convention |
Cumulative distribution function  |
Notation |
![{\displaystyle {\mathcal {U}}_{[a,b]}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/906b38f0905adef68e3c8c7ca6de15858f7742ce) |
---|
Parameters |
 |
---|
Support |
![{\displaystyle [a,b]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9c4b788fc5c637e26ee98b45f89a5c08c85f7935) |
---|
PDF |
![{\displaystyle {\begin{cases}{\frac {1}{b-a}}&{\text{for }}x\in [a,b]\\0&{\text{otherwise}}\end{cases}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/648692e002b720347c6c981aeec2a8cca7f4182f) |
---|
CDF |
![{\displaystyle {\begin{cases}0&{\text{for }}x<a\\{\frac {x-a}{b-a}}&{\text{for }}x\in [a,b]\\1&{\text{for }}x>b\end{cases}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2948c023c98e2478806980eb7f5a03810347a568) |
---|
Mean |
 |
---|
Median |
 |
---|
Mode |
 |
---|
Variance |
 |
---|
MAD |
 |
---|
Skewness |
 |
---|
Excess kurtosis |
 |
---|
Entropy |
 |
---|
MGF |
 |
---|
CF |
 |
---|
In probability theory and statistics, the continuous uniform distributions or rectangular distributions are a family of symmetric probability distributions. Such a distribution describes an experiment where there is an arbitrary outcome that lies between certain bounds.[1] The bounds are defined by the parameters,
and
which are the minimum and maximum values. The interval can either be closed (i.e.
) or open (i.e.
).[2] Therefore, the distribution is often abbreviated
where
stands for uniform distribution.[1] The difference between the bounds defines the interval length; all intervals of the same length on the distribution's support are equally probable. It is the maximum entropy probability distribution for a random variable
under no constraint other than that it is contained in the distribution's support.[3]