Cyanopolyyne

Chemical structure of cyanoacetylene, the simplest cyanopolyyne

In organic chemistry, cyanopolyynes are a family of organic compounds with the chemical formula HCnN (n = 3,5,7,…) and the structural formula H−[C≡C−]nC≡N (n = 1,2,3,…). Structurally, they are polyynes with a cyano group (−C≡N) covalently bonded to one of the terminal acetylene units (H−C≡C).

A rarely seen group of molecules both due to the difficulty in production and the unstable nature of the paired groups, the cyanopolyynes have been observed as a major organic component in interstellar clouds.[1] This is believed to be due to the hydrogen scarcity of some of these clouds. Interference with hydrogen is one of the reason for the molecule's instability due to the energetically favorable dissociation back into hydrogen cyanide and acetylene.[2]

Cyanopolyynes were first discovered in interstellar molecular clouds in 1971 using millimeter wave and microwave telescopes.[1] Since then many higher weight cyanopolyynes such as HC
7
N
and HC
11
N
have been discovered, although some of these identifications have been disputed. Other derivatives such as methylcyanoacetylene CH
3
C
3
N
and ethylcyanoacetylene CH
3
CH
2
C
3
N
have been observed as well.[3] The simplest example is cyanoacetylene, H−C≡C−C≡N. Cyanoacetylene is more common on Earth and it is believed to be the initial reagent for most of the photocatalyzed formation of the interstellar cyanopolyynes. Cyanoacetylene is one of the molecules that was produced in the Miller–Urey experiment and is expected to be found in carbon-rich environments.[4]

Identification is made through comparison of experimental spectrum with spectrum gathered from the telescope. This is commonly done with measurement of the rotational constant, the energy of the rotational transitions, or a measurement of the dissociation energy. These spectra can either be generated ab initio from a computational chemistry program or, such as with the more stable cyanoacetylene, by direct measurement of the spectra in an experiment. Once the spectra are generated, the telescope can scan within certain frequencies for the desired molecules. Quantification can be accomplished as well to determine the density of the compounds in the cloud.

  1. ^ a b Turner, B. E. (1971). "Detection of interstellar cyanoacetylene". Astrophysical Journal. 163 (1): L35. doi:10.1086/180662.
  2. ^ Balucani, N.; Asvany, O.; Huang, L. C. L.; Lee, Y. T.; Kaiser, R. I.; Osamura, Y.; Bettinger, H. F. (2000). "Formation of nitriles in the interstellar medium via reactions of cyano radicals, CN(X2Σ+), with unsaturated hydrocarbons". Astrophysical Journal. 545 (2): 892–906. doi:10.1086/317848.
  3. ^ Broten, N. W.; Macleod, J. M.; Avery, L. W.; Irvine, W. M.; Hoglund, B.; Friberg, P.; Hjalmarson, A. (1984). "The detection of interstellar methylcyanoacetylene". Astrophysical Journal. 276 (1): L25–L29. doi:10.1086/184181. PMID 11541958.
  4. ^ McCollom, T. M. (2013). "Miller–Urey and Beyond: What Have We Learned About Prebiotic Organic Synthesis Reactions in the Past 60 Years?". In Jeanloz, R. (ed.). Annual Review of Earth and Planetary Sciences. Vol. 41. Palo Alto: Annual Reviews. pp. 207–229.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search