Deep chlorophyll maximum

The deep chlorophyll maximum (DCM), also called the subsurface chlorophyll maximum,[1][2] is the region below the surface of water with the maximum concentration of chlorophyll. The DCM generally exists at the same depth as the nutricline, the region of the ocean where the greatest change in the nutrient concentration occurs with depth.[3]

A DCM is not always present - sometimes there is more chlorophyll at the surface than at any greater depth - but it is a common feature of most aquatic ecosystems, especially in regions of strong thermal stratification.[4] The depth, thickness, intensity, composition, and persistence of DCMs vary widely.[2][5]

A common way of determining the DCM is through the use of a CTD rosette, an underwater instrument that measures various parameters of water at specific depths.[4] The location and formation of the DCM depends on multiple factors, such as the resident organisms' nutritional needs and light availability. Some organisms have adapted to lower levels of light through increasing its cellular chlorophyll amounts,[6] and others have adapted by migrating vertically with varying nutrient and light levels.[7] The DCM species composition vary with water chemistry, location, seasonality, and depth.[3][8] Not only is there a difference in DCM species composition between oceans and lakes, variation is also present within different oceans and lakes. Because the DCM holds much of the world's primary productivity, it plays a significant role in nutrient cycling,[9] the flow of energy, and biogeochemical cycles.[10]

  1. ^ Jochem, Frank J.; Pollehne, Falk; Zeitzschel, Bernt (January 1993). "Productivity regime and phytoplankton size structure in the Arabian Sea" (PDF). Deep Sea Research Part II: Topical Studies in Oceanography. 40 (3): 711–735. Bibcode:1993DSRII..40..711J. doi:10.1016/0967-0645(93)90054-q. ISSN 0967-0645.
  2. ^ a b Anderson, G. C. (May 1969). "Subsurface Chlorophyll Maximum in the Northeast Pacific Ocean1". Limnology and Oceanography. 14 (3): 386–391. Bibcode:1969LimOc..14..386A. doi:10.4319/lo.1969.14.3.0386. ISSN 0024-3590.
  3. ^ a b Estrada, M; Marrasé, C; Latasa, M; Berdalet, E; Delgado, M; Riera, T (1993). "Variability of deep chlorophyll maximum characteristics in the Northwestern Mediterranean". Marine Ecology Progress Series. 92: 289–300. Bibcode:1993MEPS...92..289E. doi:10.3354/meps092289. ISSN 0171-8630.
  4. ^ a b Weston, K.; Fernand, L.; Mills, D. K.; Delahunty, R.; Brown, J. (2005-09-01). "Primary production in the deep chlorophyll maximum of the central North Sea". Journal of Plankton Research. 27 (9): 909–922. doi:10.1093/plankt/fbi064. ISSN 1464-3774.
  5. ^ Cullen, JJ. (1982). "The Deep Chlorophyll Maximum: Comparing Vertical Profiles of Chlorophyll a". Canadian Journal of Fisheries and Aquatic Sciences. 39 (5): 791–803. doi:10.1139/f82-108.
  6. ^ Cite error: The named reference :2 was invoked but never defined (see the help page).
  7. ^ Cullen, John J. (2015-01-03). "Subsurface Chlorophyll Maximum Layers: Enduring Enigma or Mystery Solved?". Annual Review of Marine Science. 7 (1): 207–239. Bibcode:2015ARMS....7..207C. doi:10.1146/annurev-marine-010213-135111. ISSN 1941-1405. PMID 25251268.
  8. ^ Cite error: The named reference :1 was invoked but never defined (see the help page).
  9. ^ Cite error: The named reference :11 was invoked but never defined (see the help page).
  10. ^ Cite error: The named reference :6 was invoked but never defined (see the help page).

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search