Delia (fly)

Delia
Delia radicum
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Diptera
Family: Anthomyiidae
Subfamily: Anthomyiinae
Tribe: Hydrophoriini
Genus: Delia
Robineau-Desvoidy, 1830
Type species
Delia floricola
Synonyms [1]
  • Eroischia Lioy, 1864
  • Leptohylemyia Schnabl & Dziedzicki, 1911
  • Cimbotoma Lioy, 1864
  • Gastrolepta Lioy, 1864
  • Trigonostoma Lioy, 1864
  • Crinura Schnabl & Dziedzicki, 1911
  • Chortophilina Karl, 1928[2]
  • Flavena Karl, 1928[2]
  • Tricharia Karl, 1928[2]
  • Atrichodelia Karl, 1943
  • Bisetaria Karl, 1943
  • Chaetodelia Karl, 1943
  • Leucodelia Karl, 1943
  • Monodelia Karl, 1943
  • Subdelia Karl, 1943
  • Trichohylemyia Karl, 1943

Delia flies are members of the Anthomyiidae family within the superfamily Muscoidae.[3] The identification of different species of Delia can be very difficult for non-specialists as the diagnostic characteristics used for immature and/or female specimens may be inconsistent between species.[4] Past taxonomic keys were not as comprehensive in their identification of Delia specimens; they were either too reliant on genetic characteristics, focused solely on a specific life stage, or were focused only on certain species.[4] However current taxonomic keys aim to be more thorough by not only including morphological diagnostics for males, females, and immature specimens of various species, but also their genetic make-up or molecular barcode.[4]

Certain Delia species are of great economic importance as they are agricultural pests. The larvae of these flies, which tunnel into roots and stems of host plants, can cause considerable yield losses. Although most members of this genus have larvae that feed on stems, flowers, roots, and fruits of plants, a few others have larvae that are leaf miners. As herbivores, Delia flies can be categorized as a generalist or a specialist depending on their diet.[5] Those that can eat and safely digest a wide variety of plants are known as generalists, whereas those that feed on one sole plant type are known as specialists.[5] Specialists typically have the ability to tolerate and/or enzymatically detoxify the harmful allelochemicals produced by the plants they feed on.[6] Common specialist species that are detrimental to crops include D. radicum (cabbage fly) and D. floralis (turnip root fly), which feed on the roots and/or leaves of Brassica crops, D. antiqua (onion fly), D. platura (seed-corn fly), D. florilega (bean-seed fly), which feed on allium roots and leaves, and D. coarctata (wheat-bulb flies) which feed on cereals.[3][7]

  1. ^ A. Soos & L. Papp, ed. (1986). Catalogue of Palaearctic Diptera. Vol. 13, Anthomyiidae - Tachinidae. Hungarian Natural History Museum. p. 624 pp. ISBN 978-963-7093-21-0.
  2. ^ a b c Karl, O. (1928). Zweiflugler oder Diptera. III. Muscidae. In Dahl, F. (ed.), Tierwelt Deutschlands, Teil 13. Jena: G. Fischer. pp. 1–232.
  3. ^ a b Finch, S (January 1989). "Ecological Considerations in the Management of Delia Pest Species in Vegetable Crops". Annual Review of Entomology. 34 (1): 117–137. doi:10.1146/annurev.en.34.010189.001001. ISSN 0066-4170.
  4. ^ a b c Savage, J; Fortiere, A; Fournier, F; Bellavance, V (2016). "Identification of Delia pest species (Diptera: Anthomyiidae) in cultivated crucifers and other vegetable crops in Canada". Canadian Journal of Arthropod Identification. 29: 1–40. doi:10.3752/cjai.2016.29.
  5. ^ a b "Generalist versus Specialist". www.webpages.uidaho.edu. Retrieved 2020-08-10.
  6. ^ Johnson, K. S. (1999). "Comparative detoxification of plant (Magnolia virginiana) allelochemicals by generalists and specialist saturniid silkmoths". Journal of Chemical Ecology. 25 (2): 253–269. doi:10.1023/a:1020890628279. ISSN 0098-0331. S2CID 24568858.
  7. ^ Soroka, J. J.; Dosdall, L. M.; Olfert, O. O.; Seidle, E. (2004-10-01). "Root maggots (Delia spp., Diptera: Anthomyiidae) in prairie canola (Brassica napus L. and B. rapa L.): Spatial and temporal surveys of root damage and prediction of damage levels". Canadian Journal of Plant Science. 84 (4): 1171–1182. doi:10.4141/p02-174. ISSN 0008-4220.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search