Detector (radio)

A coherer detector, useful only for Morse code signals.

In radio, a detector is a device or circuit that extracts information from a modulated radio frequency current or voltage. The term dates from the first three decades of radio (1888–1918). Unlike modern radio stations which transmit sound (an audio signal) on an uninterrupted carrier wave, early radio stations transmitted information by radiotelegraphy. The transmitter was switched on and off to produce long or short periods of radio waves, spelling out text messages in Morse code. Therefore, early radio receivers could reproduce the Morse code "dots" and "dashes" by simply distinguishing between the presence or absence of a radio signal. The device that performed this function in the receiver circuit was called a detector.[1] A variety of different detector devices, such as the coherer, electrolytic detector, magnetic detector and the crystal detector, were used during the wireless telegraphy era until superseded by vacuum tube technology.

After the invention of amplitude modulation (AM) enabled the development of AM radiotelephony, the transmission of sound (audio), during World War 1, the term evolved to mean a demodulator, (usually a vacuum tube) which extracted the audio signal from the radio frequency carrier wave. This is its current meaning, although modern detectors usually consist of semiconductor diodes, transistors, or integrated circuits.

In a superheterodyne receiver the term is also sometimes used to refer to the mixer, the tube or transistor which converts the incoming radio frequency signal to the intermediate frequency. The mixer is called the first detector, while the demodulator that extracts the audio signal from the intermediate frequency is called the second detector. In microwave and millimeter wave technology the terms detector and crystal detector refer to waveguide or coaxial transmission line components, used for power or SWR measurement, that typically incorporate point contact diodes or surface barrier Schottky diodes.


© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search