Diabatic representation

The diabatic representation as a mathematical tool for theoretical calculations of atomic collisions and of molecular interactions.

One of the guiding principles in modern chemical dynamics and spectroscopy is that the motion of the nuclei in a molecule is slow compared to that of its electrons. This is justified by the large disparity between the mass of an electron, and the typical mass of a nucleus and leads to the Born–Oppenheimer approximation and the idea that the structure and dynamics of a chemical species are largely determined by nuclear motion on potential energy surfaces.

The potential energy surfaces are obtained within the adiabatic or Born–Oppenheimer approximation. This corresponds to a representation of the molecular wave function where the variables corresponding to the molecular geometry and the electronic degrees of freedom are separated. The non separable terms are due to the nuclear kinetic energy terms in the molecular Hamiltonian and are said to couple the potential energy surfaces. Nearby an avoided crossing or conical intersection, these terms are substantive. Therefore one unitary transformation is performed from the adiabatic representation to the so-called diabatic representation in which the nuclear kinetic energy operator is diagonal. In this representation, the coupling is due to the electronic energy and is a scalar quantity that is significantly easier to estimate numerically.

In the diabatic representation, the potential energy surfaces are smoother, so that low order Taylor series expansions of the surface capture much of the complexity of the original system. However strictly diabatic states do not exist in the general case. Hence, diabatic potentials generated from transforming multiple electronic energy surfaces together are generally not exact. These can be called pseudo-diabatic potentials, but generally the term is not used unless it is necessary to highlight this subtlety. Hence, pseudo-diabatic potentials are synonymous with diabatic potentials.


© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search