Enzyme kinetics

Dihydrofolate reductase from E. coli with its two substrates dihydrofolate (right) and NADPH (left), bound in the active site. The protein is shown as a ribbon diagram, with alpha helices in red, beta sheathes in yellow and loops in blue. (PDB: 7DFR​)

Enzyme kinetics is the study of the rates of enzyme-catalysed chemical reactions. In enzyme kinetics, the reaction rate is measured and the effects of varying the conditions of the reaction are investigated. Studying an enzyme's kinetics in this way can reveal the catalytic mechanism of this enzyme, its role in metabolism, how its activity is controlled, and how a drug or a modifier (inhibitor or activator) might affect the rate.

An enzyme (E) is a protein molecule that serves as a biological catalyst to facilitate and accelerate a chemical reaction in the body. It does this through binding of another molecule, its substrate (S), which the enzyme acts upon to form the desired product. The substrate binds to the active site of the enzyme to produce an enzyme-substrate complex ES, and is transformed into an enzyme-product complex EP and from there to product P, via a transition state ES*. The series of steps is known as the mechanism:

E + S ⇄ ES ⇄ ES* ⇄ EP ⇄ E + P

This example assumes the simplest case of a reaction with one substrate and one product. Such cases exist: for example, a mutase such as phosphoglucomutase catalyses the transfer of a phosphate group from one position to another, and isomerase is a more general term for an enzyme that catalyses any one-substrate one-product reaction, such as triosephosphate isomerase. However, such enzymes are not very common, and are heavily outnumbered by enzymes that catalyse two-substrate two-product reactions: these include, for example, the NAD-dependent dehydrogenases such as alcohol dehydrogenase, which catalyses the oxidation of ethanol by NAD+. Reactions with three or four substrates or products are less common, but they exist. There is no necessity for the number of products to be equal to the number of substrates; for example, glyceraldehyde 3-phosphate dehydrogenase has three substrates and two products.

When enzymes bind multiple substrates, such as dihydrofolate reductase (shown right), enzyme kinetics can also show the sequence in which these substrates bind and the sequence in which products are released. An example of enzymes that bind a single substrate and release multiple products are proteases, which cleave one protein substrate into two polypeptide products. Others join two substrates together, such as DNA polymerase linking a nucleotide to DNA. Although these mechanisms are often a complex series of steps, there is typically one rate-determining step that determines the overall kinetics. This rate-determining step may be a chemical reaction or a conformational change of the enzyme or substrates, such as those involved in the release of product(s) from the enzyme.

Knowledge of the enzyme's structure is helpful in interpreting kinetic data. For example, the structure can suggest how substrates and products bind during catalysis; what changes occur during the reaction; and even the role of particular amino acid residues in the mechanism. Some enzymes change shape significantly during the mechanism; in such cases, it is helpful to determine the enzyme structure with and without bound substrate analogues that do not undergo the enzymatic reaction.

Not all biological catalysts are protein enzymes: RNA-based catalysts such as ribozymes and ribosomes are essential to many cellular functions, such as RNA splicing and translation. The main difference between ribozymes and enzymes is that RNA catalysts are composed of nucleotides, whereas enzymes are composed of amino acids. Ribozymes also perform a more limited set of reactions, although their reaction mechanisms and kinetics can be analysed and classified by the same methods.


© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search