F-ATPase

F-ATPase
Simplified model of FOF1-ATPase alias ATP synthase of E. coli. Subunits of the enzyme are labeled accordingly
Identifiers
SymbolF-ATPase
TCDB3.A.2
OPM superfamily5
OPM protein6fkf
Membranome227

F-ATPase, also known as F-Type ATPase, is an ATPase/synthase found in bacterial plasma membranes, in mitochondrial inner membranes (in oxidative phosphorylation, where it is known as Complex V), and in chloroplast thylakoid membranes. It uses a proton gradient to drive ATP synthesis by allowing the passive flux of protons across the membrane down their electrochemical gradient and using the energy released by the transport reaction to release newly formed ATP from the active site of F-ATPase. Together with V-ATPases and A-ATPases, F-ATPases belong to superfamily of related rotary ATPases.

F-ATPase consists of two domains:

  • the Fo domain, which is integral in the membrane and is composed of 3 different types of integral proteins classified as a, b and c.[1]
  • the F1, which is peripheral (on the side of the membrane that the protons are moving into). F1 is composed of 5 polypeptide units α3β3γδε that bind to the surface of the Fo domain.[1]

F-ATPases usually work as ATP synthases instead of ATPases in cellular environments. That is to say, it usually makes ATP from the proton gradient instead of working in the other direction like V-ATPases typically do. They do occasionally revert as ATPases in bacteria.[2]

  1. ^ a b Lodish H (2008). Molecular Cell Biology (Kindle ed.). W. H. Freeman. p. 553.
  2. ^ Ren Q, Paulsen IT (2009). "Transport, Solute". Encyclopedia of Microbiology (Third ed.). Academic Press. pp. 529–544. doi:10.1016/B978-012373944-5.00107-3. ISBN 978-0-12-373944-5.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search