Family symmetries

In particle physics, the family symmetries or horizontal symmetries are various discrete, global, or local symmetries between quark-lepton families or generations. In contrast to the intrafamily or vertical symmetries (collected in the conventional Standard Model and Grand Unified Theories) which operate inside each family, these symmetries presumably underlie physics of the family flavors. They may be treated as a new set of quantum charges assigned to different families of quarks and leptons.

Spontaneous symmetry breaking of these symmetries is believed to lead to an adequate description of the flavor mixing of quarks and leptons of different families.  This is certainly one of the major problems that presently confront particle physics. Despite its great success in explaining the basic interactions of nature, the Standard Model still suffers from an absence of such a unique ability to explain the flavor mixing angles or weak mixing angles (as they are conventionally referred to) whose observed values are collected in the corresponding Cabibbo–Kobayashi–Maskawa matrices.

While being conceptually useful and leading in some cases to the physically valuable patterns of the flavor mixing, the family symmetries are not yet observationally confirmed.


© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search