Flat slab subduction

A diagram representing flat slab subduction

Flat slab subduction is characterized by a low subduction angle (<30 degrees to horizontal) beyond the seismogenic layer and a resumption of normal subduction far from the trench.[1] A slab refers to the subducting lower plate. A broader definition of flat slab subduction includes any shallowly dipping lower plate, as in western Mexico. Flat slab subduction is associated with the pinching out of the asthenosphere, an inland migration of arc magmatism (magmatic sweep), and an eventual cessation of arc magmatism.[2] The coupling of the flat slab to the upper plate is thought to change the style of deformation occurring on the upper plate's surface and form basement-cored uplifts like the Rocky Mountains.[2][3] The flat slab also may hydrate the lower continental lithosphere[2] and be involved in the formation of economically important ore deposits.[4] During the subduction, a flat slab itself may deform or buckle, causing sedimentary hiatus in marine sediments on the slab.[5] The failure of a flat slab is associated with ignimbritic volcanism and the reverse migration of arc volcanism.[2] Multiple working hypotheses about the cause of flat slabs are subduction of thick, buoyant oceanic crust (15–20 km)[6] and trench rollback accompanying a rapidly overriding upper plate and enhanced trench suction.[7] The west coast of South America has two of the largest flat slab subduction zones.[2] Flat slab subduction is occurring at 10% of subduction zones.[3]

  1. ^ Kumar, Abhash; Wagner, Lara S.; Beck, Susan L.; Long, Maureen D.; Zandt, George; Young, Bissett; Tavera, Hernando; Minaya, Estella (2016-05-01). "Seismicity and state of stress in the central and southern Peruvian flat slab". Earth and Planetary Science Letters. 441: 71–80. Bibcode:2016E&PSL.441...71K. doi:10.1016/j.epsl.2016.02.023.
  2. ^ a b c d e Humphreys, Eugene; Hessler, Erin; Dueker, Kenneth; Farmer, G. Lang; Erslev, Eric; Atwater, Tanya (2003-07-01). "How Laramide-Age Hydration of North American Lithosphere by the Farallon Slab Controlled Subsequent Activity in the Western United States". International Geology Review. 45 (7): 575–595. Bibcode:2003IGRv...45..575H. doi:10.2747/0020-6814.45.7.575. ISSN 0020-6814. S2CID 15349233.
  3. ^ a b Gutscher, Marc-André; Spakman, Wim; Bijwaard, Harmen; Engdahl, E. Robert (2000-10-01). "Geodynamics of flat subduction: Seismicity and tomographic constraints from the Andean margin". Tectonics. 19 (5): 814–833. Bibcode:2000Tecto..19..814G. doi:10.1029/1999TC001152. ISSN 1944-9194.
  4. ^ Rosenbaum, Gideon; Giles, David; Saxon, Mark; Betts, Peter G.; Weinberg, Roberto F.; Duboz, Cecile (2005-10-30). "Subduction of the Nazca Ridge and the Inca Plateau: Insights into the formation of ore deposits in Peru". Earth and Planetary Science Letters. 239 (1–2): 18–32. Bibcode:2005E&PSL.239...18R. doi:10.1016/j.epsl.2005.08.003.
  5. ^ Li, Yong-Xiang; Zhao, Xixi; Jovane, Luigi; Petronotis, Katerina E.; Gong, Zheng; Xie, Siyi (2015-12-01). "Paleomagnetic constraints on the tectonic evolution of the Costa Rican subduction zone: New results from sedimentary successions of IODP drill sites from the Cocos Ridge". Geochemistry, Geophysics, Geosystems. 16 (12): 4479–4493. Bibcode:2015GGG....16.4479L. doi:10.1002/2015GC006058. ISSN 1525-2027.
  6. ^ Antonijevic, Sanja Knezevic; Wagner, Lara S.; Kumar, Abhash; Beck, Susan L.; Long, Maureen D.; Zandt, George; Tavera, Hernando; Condori, Cristobal (2015-08-13). "The role of ridges in the formation and longevity of flat slabs". Nature. 524 (7564): 212–215. Bibcode:2015Natur.524..212A. doi:10.1038/nature14648. ISSN 0028-0836. PMID 26268192. S2CID 205244754.
  7. ^ Manea, Vlad C.; Pérez-Gussinyé, Marta; Manea, Marina (2012-01-01). "Chilean flat slab subduction controlled by overriding plate thickness and trench rollback". Geology. 40 (1): 35–38. Bibcode:2012Geo....40...35M. doi:10.1130/G32543.1. ISSN 0091-7613.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search