Glyoxylate cycle

Overview of the Glyoxylate Cycle

The glyoxylate cycle, a variation of the tricarboxylic acid cycle, is an anabolic pathway occurring in plants, bacteria, protists, and fungi. The glyoxylate cycle centers on the conversion of acetyl-CoA to succinate for the synthesis of carbohydrates.[1] In microorganisms, the glyoxylate cycle allows cells to use two carbons (C2 compounds), such as acetate, to satisfy cellular carbon requirements when simple sugars such as glucose or fructose are not available.[2] The cycle is generally assumed to be absent in animals, with the exception of nematodes at the early stages of embryogenesis. In recent years, however, the detection of malate synthase (MS) and isocitrate lyase (ICL), key enzymes involved in the glyoxylate cycle, in some animal tissue has raised questions regarding the evolutionary relationship of enzymes in bacteria and animals and suggests that animals encode alternative enzymes of the cycle that differ in function from known MS and ICL in non-metazoan species.[1][3]

Plants as well as some algae and bacteria can use acetate as the carbon source for the production of carbon compounds. Plants and bacteria employ a modification of the TCA cycle called the glyoxylate cycle to produce four carbon dicarboxylic acid from two carbon acetate units. The glyoxylate cycle bypasses the two oxidative decarboxylation reactions of the TCA cycle and directly converts isocitrate through isocitrate lyase and malate synthase into malate and succinate.

The glyoxylate cycle was discovered in 1957 at the University of Oxford by Sir Hans Kornberg and his mentor Hans Krebs, resulting in a Nature paper Synthesis of Cell Constituents from C2-Units by a Modified Tricarboxylic Acid Cycle.[4]

  1. ^ a b Kondrashov FA, Koonin EV, Morgunov IG, Finogenova TV, Kondrashova MN (October 2006). "Evolution of glyoxylate cycle enzymes in Metazoa: evidence of multiple horizontal transfer events and pseudogene formation". Biology Direct. 1: 31. doi:10.1186/1745-6150-1-31. PMC 1630690. PMID 17059607.
  2. ^ Lorenz MC, Fink GR (October 2002). "Life and death in a macrophage: role of the glyoxylate cycle in virulence". Eukaryotic Cell. 1 (5): 657–62. doi:10.1128/EC.1.5.657-662.2002. PMC 126751. PMID 12455685.
  3. ^ Popov, EA; Moskalev, EA; Shevchenko, MU; Eprintsev, AT (November 2005). "Comparative analysis of glyoxylate cycle key enzyme isocitrate lyase from organisms of different systematic groups". Journal of Evolutionary Biochemistry and Physiology. 41 (6): 631–639. doi:10.1007/s10893-006-0004-3. S2CID 30856607.
  4. ^ Kornberg, H. L.; Krebs, H. A. (1957). "Synthesis of Cell Constituents from C 2 -Units by a Modified Tricarboxylic Acid Cycle". Nature. 179 (4568): 988–991. Bibcode:1957Natur.179..988K. doi:10.1038/179988a0. ISSN 1476-4687. PMID 13430766. S2CID 40858130.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search