Hawking radiation

Hawking radiation is the theoretical thermal black-body radiation released outside a black hole's event horizon. This is counterintuitive because once ordinary electromagnetic radiation is inside the event horizon, it cannot escape. It is named after the physicist Stephen Hawking, who developed a theoretical argument for its existence in 1974.[1] Hawking radiation is predicted to be extremely faint and is many orders of magnitude below the current best telescopes' detecting ability.

Hawking radiation reduces the mass and rotational energy of black holes and is therefore also theorized to cause black hole evaporation. Because of this, black holes that do not gain mass through other means are expected to shrink and ultimately vanish.

For all except the smallest black holes, this happens extremely slowly. The radiation temperature is inversely proportional to the black hole's mass, so micro black holes are predicted to be larger emitters of radiation than larger black holes and should dissipate faster per their mass. As such, if small black holes exist such as permitted by the hypothesis of primordial black holes, they ought to die the fastest the smaller they shrink, leading to a final cataclysm of high energy radiation alone.[2] Such radiation bursts have not yet been detected.

  1. ^ Rose, Charlie. "A conversation with Dr. Stephen Hawking & Lucy Hawking". charlierose.com. Archived from the original on March 29, 2013.
  2. ^ Hawking, S. W. (1974-03-01). "Black hole explosions?". Nature. 248 (5443): 30–31. Bibcode:1974Natur.248...30H. doi:10.1038/248030a0. ISSN 1476-4687. S2CID 4290107.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search