In-water recompression

In-water recompression (IWR) or underwater oxygen treatment is the emergency treatment of decompression sickness (DCS) by returning the diver underwater to help the gas bubbles in the tissues, which are causing the symptoms, to resolve. It is a procedure that exposes the diver to significant risk which should be compared with the risk associated with the available options and balanced against the probable benefits. Some authorities recommend that it is only to be used when the time to travel to the nearest recompression chamber is too long to save the victim's life; others take a more pragmatic approach and accept that in some circumstances IWR is the best available option.[1][2] The risks may not be justified for case of mild symptoms likely to resolve spontaneously, or for cases where the diver is likely to be unsafe in the water, but in-water recompression may be justified in cases where severe outcomes are likely if not recompressed, if conducted by a competent and suitably equipped team.[3][4]

Carrying out in-water recompression when there is a nearby recompression chamber or without suitable equipment and training is never a desirable option.[1][2] The risk of the procedure is due to the diver suffering from DCS being seriously ill and may become paralysed, unconscious, or stop breathing while underwater. Any one of these events is likely to result in the diver drowning or asphyxiating or suffering further injury during a subsequent rescue to the surface. This risk can be reduced by improving airway security by using surface supplied gas and a helmet or full-face mask.[3] Risk of injury during emergency surfacing is minimised by treatment on 100% oxygen, which is also the only gas with a reliable record of positive outcomes. Early recompression on oxygen has a high rate of complete resolution of symptoms, even for shallower and shorter treatment than the highly successful US Navy Treatment Table 6.[3]

Several schedules have been published for in-water recompression treatment, but little data on their efficacy is available.[3] The Australian Navy tables and US Navy Tables may have the largest amount of empirical evidence supporting their efficacy.[4]

  1. ^ a b Cite error: The named reference uhms was invoked but never defined (see the help page).
  2. ^ a b Cite error: The named reference Pyle was invoked but never defined (see the help page).
  3. ^ a b c d Cite error: The named reference Doolette and Mitchell 2018 was invoked but never defined (see the help page).
  4. ^ a b Cite error: The named reference Walker and Murphy-Lavoie was invoked but never defined (see the help page).

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search