Inflection point

Plot of y = x3 with an inflection point at (0,0), which is also a stationary point.
The roots, stationary points, inflection point and concavity of a cubic polynomial x3 − 6x2 + 9x − 4 (solid black curve) and its first (dashed red) and second (dotted orange) derivatives.

In differential calculus and differential geometry, an inflection point, point of inflection, flex, or inflection (rarely inflexion) is a point on a smooth plane curve at which the curvature changes sign. In particular, in the case of the graph of a function, it is a point where the function changes from being concave (concave downward) to convex (concave upward), or vice versa.

For the graph of a function f of differentiability class C2 (its first derivative f', and its second derivative f'', exist and are continuous), the condition f'' = 0 can also be used to find an inflection point since a point of f'' = 0 must be passed to change f'' from a positive value (concave upward) to a negative value (concave downward) or vice versa as f'' is continuous; an inflection point of the curve is where f'' = 0 and changes its sign at the point (from positive to negative or from negative to positive).[1] A point where the second derivative vanishes but does not change its sign is sometimes called a point of undulation or undulation point.

In algebraic geometry an inflection point is defined slightly more generally, as a regular point where the tangent meets the curve to order at least 3, and an undulation point or hyperflex is defined as a point where the tangent meets the curve to order at least 4.

  1. ^ Stewart, James (2015). Calculus (8 ed.). Boston: Cengage Learning. p. 281. ISBN 978-1-285-74062-1.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search