Injective and projective model structure

In higher category theory in mathematics, injective and projective model structures are special model structures on functor categories into a model category. Both model structures do not have to exist, but there are conditions guaranteeing their existence. An important application is for the study of limits and colimits, which are functors from a functor category and can therefore be made into Quillen adjunctions.


© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search