Integrated urban water management

Comparing the natural and urban water cycle and streetscapes in conventional and Blue-Green Cities

Integrated urban water management (IUWM) is the practice of managing freshwater, wastewater, and storm water as components of a basin-wide management plan. It builds on existing water supply and sanitation considerations within an urban settlement by incorporating urban water management within the scope of the entire river basin.[1] IUWM is commonly seen as a strategy for achieving the goals of Water Sensitive Urban Design. IUWM seeks to change the impact of urban development on the natural water cycle, based on the premise that by managing the urban water cycle as a whole; a more efficient use of resources can be achieved providing not only economic benefits but also improved social and environmental outcomes. One approach is to establish an inner, urban, water cycle loop through the implementation of reuse strategies. Developing this urban water cycle loop requires an understanding both of the natural, pre-development, water balance and the post-development water balance. Accounting for flows in the pre- and post-development systems is an important step toward limiting urban impacts on the natural water cycle.[2]

IUWM within an urban water system can also be conducted by performance assessment of any new intervention strategies by developing a holistic approach which encompasses various system elements and criteria including sustainability type ones in which integration of water system components including water supply, waste water and storm water subsystems would be advantageous.[3] Simulation of metabolism type flows in urban water system can also be useful for analysing processes in urban water cycle of IUWM.[3][4]

  1. ^ Jonathan Parkinson; J. A. Goldenfum; Carlos E. M. Tucci, eds. (2010). Integrated urban water management : humid tropics. Boca Raton: CRC Press. p. 2. ISBN 978-0-203-88117-0. OCLC 671648461.
  2. ^ Cite error: The named reference CSRIO was invoked but never defined (see the help page).
  3. ^ a b Behzadian, K; Kapelan, Z (2015). "Advantages of integrated and sustainability based assessment for metabolism based strategic planning of urban water systems" (PDF). Science of the Total Environment. 527–528: 220–231. Bibcode:2015ScTEn.527..220B. doi:10.1016/j.scitotenv.2015.04.097. hdl:10871/17351. PMID 25965035.
  4. ^ Behzadian, k; Kapelan, Z (2015). "Modelling metabolism based performance of an urban water system using WaterMet2" (PDF). Resources, Conservation and Recycling. 99: 84–99. doi:10.1016/j.resconrec.2015.03.015. hdl:10871/17108.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search