Integrating sphere

Large integrating sphere for measurement on light bulbs and small lamps

An integrating sphere (also known as an Ulbricht sphere) is an optical component consisting of a hollow spherical cavity with its interior covered with a diffuse white reflective coating, with small holes for entrance and exit ports. Its relevant property is a uniform scattering or diffusing effect. Light rays incident on any point on the inner surface are, by multiple scattering reflections, distributed equally to all other points. The effects of the original direction of light are minimized. An integrating sphere may be thought of as a diffuser which preserves power but destroys spatial information. It is typically used with some light source and a detector for optical power measurement. A similar device is the focusing or Coblentz sphere, which differs in that it has a mirror-like (specular) inner surface rather than a diffuse inner surface.

In 1892, W. E. Sumpner published an expression for the throughput of a spherical enclosure with diffusely reflecting walls.[1] Ř. Ulbricht developed a practical realization of the integrating sphere, the topic of a publication in 1900.[2] It has become a standard instrument in photometry and radiometry and has the advantage over a goniophotometer that the total power produced by a source can be obtained in a single measurement. Other shapes, such as a cubical box, have also been theoretically analyzed.[3]

Even small commercial integrating spheres cost many thousands of dollars, as a result their use is often limited to industry and large academic institutions. However, 3D printing and homemade coatings have seen the production of experimentally accurate DIY spheres for very low cost.[4]

  1. ^ Cite error: The named reference Sumpner1892 was invoked but never defined (see the help page).
  2. ^ Cite error: The named reference Ulbricht1900 was invoked but never defined (see the help page).
  3. ^ Cite error: The named reference Sumpner1910 was invoked but never defined (see the help page).
  4. ^ Cite error: The named reference Tomes2016 was invoked but never defined (see the help page).

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search