This article needs additional citations for verification. (August 2012) |
In dynamical systems, a branch of mathematics, an invariant manifold is a topological manifold that is invariant under the action of the dynamical system.[1] Examples include the slow manifold, center manifold, stable manifold, unstable manifold, subcenter manifold and inertial manifold.
Typically, although by no means always, invariant manifolds are constructed as a 'perturbation' of an invariant subspace about an equilibrium. In dissipative systems, an invariant manifold based upon the gravest, longest lasting modes forms an effective low-dimensional, reduced, model of the dynamics.[2]
© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search