Ion channel

Schematic diagram of an ion channel. 1 - channel domains (typically four per channel), 2 - outer vestibule, 3 - selectivity filter, 4 - diameter of selectivity filter, 5 - phosphorylation site, 6 - cell membrane.

Ion channels are pore-forming membrane proteins that allow ions to pass through the channel pore. Their functions include establishing a resting membrane potential,[1] shaping action potentials and other electrical signals by gating the flow of ions across the cell membrane, controlling the flow of ions across secretory and epithelial cells, and regulating cell volume. Ion channels are present in the membranes of all cells.[2][3] Ion channels are one of the two classes of ionophoric proteins, the other being ion transporters.[4]

The study of ion channels often involves biophysics, electrophysiology, and pharmacology, while using techniques including voltage clamp, patch clamp, immunohistochemistry, X-ray crystallography, fluoroscopy, and RT-PCR. Their classification as molecules is referred to as channelomics.

  1. ^ Abdul Kadir L, Stacey M, Barrett-Jolley R (2018). "Emerging Roles of the Membrane Potential: Action Beyond the Action Potential". Frontiers in Physiology. 9: 1661. doi:10.3389/fphys.2018.01661. PMC 6258788. PMID 30519193.
  2. ^ Alexander SP, Mathie A, Peters JA (November 2011). "Ion Channels". British Journal of Pharmacology. 164 (Suppl 1): S137–S174. doi:10.1111/j.1476-5381.2011.01649_5.x. PMC 3315630.
  3. ^ "Ion Channel". Scitable. 2014. Retrieved 2019-05-28.
  4. ^ Hille B (2001) [1984]. Ion Channels of Excitable Membranes (3rd ed.). Sunderland, Mass: Sinauer Associates, Inc. p. 5. ISBN 978-0-87893-321-1.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search