Killing horizon

In physics, a Killing horizon is a geometrical construct used in general relativity and its generalizations to delineate spacetime boundaries without reference to the dynamic Einstein field equations. Mathematically a Killing horizon is a null hypersurface defined by the vanishing of the norm of a Killing vector field (both are named after Wilhelm Killing).[1] It can also be defined as a null hypersurface generated by a Killing vector, which in turn is null at that surface.

After Hawking showed that quantum field theory in curved spacetime (without reference to the Einstein field equations) predicted that a black hole formed by collapse will emit thermal radiation, it became clear that there is an unexpected connection between spacetime geometry (Killing horizons) and thermal effects for quantum fields. In particular, there is a very general relationship between thermal radiation and spacetimes that admit a one-parameter group of isometries possessing a bifurcate Killing horizon, which consists of a pair of intersecting null hypersurfaces that are orthogonal to the Killing field.[2]

  1. ^ Reall, Harvey (2008). black holes (PDF). p. 17. Archived from the original (PDF) on 2015-07-15. Retrieved 2015-07-15.
  2. ^ Kay, Bernard S.; Wald, Robert M. (August 1991). "Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on spacetimes with a bifurcate Killing horizon". Physics Reports. 207 (2): 49-136. Bibcode:1991PhR...207...49K. doi:10.1016/0370-1573(91)90015-E.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search