The lemniscate sine (red) and lemniscate cosine (purple) applied to a real argument, in comparison with the trigonometric sine y = sin(πx/ϖ) (pale dashed red).
The lemniscate sine and lemniscate cosine functions, usually written with the symbols sl and cl (sometimes the symbols sinlem and coslem or sin lemn and cos lemn are used instead),[2] are analogous to the trigonometric functions sine and cosine. While the trigonometric sine relates the arc length to the chord length in a unit-diametercircle[3] the lemniscate sine relates the arc length to the chord length of a lemniscate
^The circle is the unit-diameter circle centered at with polar equation the degree-2 clover under the definition from Cox & Shurman (2005). This is not the unit-radius circle centered at the origin. Notice that the lemniscate is the degree-4 clover.
^The fundamental periods and are "minimal" in the sense that they have the smallest absolute value of all periods whose real part is non-negative.