Membrane curvature

Membrane curvature is the geometrical measure or characterization of the curvature of membranes. The membranes can be naturally occurring or man-made (synthetic). An example of naturally occurring membrane is the lipid bilayer of cells, also known as cellular membranes.[1] Synthetic membranes can be obtained by preparing aqueous solutions of certain lipids. The lipids will then "aggregate" and form various phases and structures. According to the conditions (concentration, temperature, ionic strength of solution, etc.) and the chemical structures of the lipid, different phases will be observed. For instance, the lipid POPC (palmitoyl oleyl phosphatidyl choline) tends to form lamellar vesicles in solution, whereas smaller lipids (lipids with shorter acyl chains, up to 8 carbons in length), such as detergents, will form micelles if the CMC (critical micelle concentration) was reached. There are five commonly proposed mechanisms by which membrane curvature is created, maintained, or controlled: lipid composition, shaped transmembrane proteins, protein motif insertion/BAR domains, protein scaffolding, and cytoskeleton scaffolding.[2]

  1. ^ Furse S (2012). "Curvy Biology". The Lipid Chronicles.
  2. ^ McMahon HT, Gallop JL (December 2005). "Membrane curvature and mechanisms of dynamic cell membrane remodelling". Nature. 438 (7068): 590–596. Bibcode:2005Natur.438..590M. doi:10.1038/nature04396. PMID 16319878. S2CID 4319503.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search