Microscopic reversibility

The principle of microscopic reversibility in physics and chemistry is twofold:

  • First, it states that the microscopic detailed dynamics of particles and fields is time-reversible because the microscopic equations of motion are symmetric with respect to inversion in time (T-symmetry);
  • Second, it relates to the statistical description of the kinetics of macroscopic or mesoscopic systems as an ensemble of elementary processes: collisions, elementary transitions or reactions. For these processes, the consequence of the microscopic T-symmetry is:

    Corresponding to every individual process there is a reverse process, and in a state of equilibrium the average rate of every process is equal to the average rate of its reverse process.[1]

  1. ^ Lewis, G. N. (1925-03-01). "A New Principle of Equilibrium". Proceedings of the National Academy of Sciences USA. 11 (3). Proceedings of the National Academy of Sciences: 179–183. Bibcode:1925PNAS...11..179L. doi:10.1073/pnas.11.3.179. ISSN 0027-8424. PMC 1085913. PMID 16576866.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search