Morphogenetic field

Before the emergence of modern genetics, A. G. Gurwitsch analysed the embryonic development of the sea urchin in 1910 as a vector-field − a mathematical construct for analysis of remote effects − as if the proliferation of cells into organs were brought about by putative external forces.

In the developmental biology of the early twentieth century, a morphogenetic field is a research hypothesis and a discrete region of cells in an embryo.[1][2]

The term morphogenetic field conceptualizes the scientific experimental finding that an embryonic group of cells, for example a forelimb bud, could be transplanted to another part of the embryo and in ongoing individual development still give rise to a forelimb at an odd place of the organism. And it describes a group of embryonic cells able to respond to localized biochemical signals − called field − leading to the genesis of morphological structures: tissues, organs, or parts of an organism.[3][4]

The spatial and temporal extents of such a region of embryonic stem cells are dynamic, and within it is a collection of interacting cells out of which a particular tissue, organ, or body part is formed.[5] As a group, the cells within a morphogenetic field in an embryo are constrained: thus, cells in a limb field will become a limb tissue, those in a heart field will become heart tissue.[6] Individual cells within a morphogenetic field in an embryo are flexible: thus, cells in a cardiac field can be redirected via cell-to-cell signaling to replace damaged or missing cells.[6]

The Imaginal disc in larvae is an example of a discrete morphogenetic field region of cells in an insect embryo.[7]

  1. ^ Cite error: The named reference Beloussov_1997 was invoked but never defined (see the help page).
  2. ^ Cite error: The named reference CGW was invoked but never defined (see the help page).
  3. ^ Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002). Universal Mechanisms of Animal Development. in: Molecular Biology of the Cell (4th ed.). Garland. ISBN 978-0-8153-3218-3.
  4. ^ Jacobson AG, Sater AK (1 November 1988). "Features of embryonic induction". Development. 104 (3): 341–59. doi:10.1242/dev.104.3.341. PMID 3076860.
  5. ^ Gilbert SF, Opitz JM, Raff RA (1996). "Resynthesizing evolutionary and developmental biology". Dev. Biol. 173 (2): 357–72. doi:10.1006/dbio.1996.0032. PMID 8605997.
  6. ^ a b Gilbert SF (2003). Developmental biology (7th ed.). Sunderland, Mass: Sinauer Associates. pp. 65–6. ISBN 978-0-87893-258-0.
  7. ^ Alberts B, et al. (2002). Organogenesis and the Patterning of Appendages. in: Molecular Biology of the Cell (4th ed.). Garland. ISBN 978-0-8153-3218-3.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search