Named-entity recognition (NER) (also known as (named) entity identification, entity chunking, and entity extraction) is a subtask of information extraction that seeks to locate and classify named entities mentioned in unstructured text into pre-defined categories such as person names (PER), organizations (ORG), locations (LOC), geopolitical entities (GPE), vehicles (VEH), medical codes, time expressions, quantities, monetary values, percentages, etc.
Most research on NER/NEE systems has been structured as taking an unannotated block of text, such as transducing:
Jim bought 300 shares of Acme Corp. in 2006.
into an annotated block of text that highlights the names of entities:
[Jim]Person bought 300 shares of [Acme Corp.]Organization in [2006]Time.
In this example, a person name consisting of one token, a two-token company name and a temporal expression have been detected and classified.
© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search