Neutron star merger

Artist's impression of neutron stars merging, producing gravitational waves and resulting in a kilonova
Artist's impression of neutron stars merging, producing gravitational waves and resulting in a kilonova

A neutron star merger is the stellar collision of neutron stars. When two neutron stars fall into mutual orbit, they gradually spiral inward due to gravitational radiation.[1] When they finally meet, their merger leads to the formation of either a more massive neutron star, or—if the mass of the remnant exceeds the Tolman–Oppenheimer–Volkoff limit—a black hole. The merger can create a magnetic field that is trillions of times stronger than that of Earth in a matter of one or two milliseconds. These events are believed to create short gamma-ray bursts.[2]

The merger of neutron stars momentarily creates an environment of such extreme neutron flux that the r-process can occur. This reaction accounts for the nucleosynthesis of around half of the isotopes in elements heavier than iron.[3]

The mergers also produce kilonovae,[4] which are transient sources of isotropic longer wave electromagnetic radiation due to the radioactive decay of heavy r-process nuclei that are produced and ejected during the merger process.[5] Kilonovae had been discussed as a possible r-process site since the reaction was first proposed in 1999, but the mechanism became widely accepted after multi-messenger event GW170817 was observed in 2017.

  1. ^ "Einstein Telescope: Unlocking a New Era in Astronomy From 250 Meters Underground".
  2. ^ Rosswog, Stephan (2013). "Astrophysics: Radioactive glow as a smoking gun". Nature. 500 (7464): 535–6. Bibcode:2013Natur.500..535R. doi:10.1038/500535a. PMID 23985867. S2CID 4401544.
  3. ^ Stromberg, Joseph (16 July 2013). "All the Gold in the Universe Could Come from the Collisions of Neutron Stars". Smithsonian. Retrieved 27 April 2014.
  4. ^ "James Webb Space Telescope finds neutron star mergers forge gold in the cosmos: 'It was thrilling'". Space.com. 21 February 2024.
  5. ^ Tanvir, N. R.; Levan, A. J.; Fruchter, A. S.; Hjorth, J.; Hounsell, R. A.; Wiersema, K.; Tunnicliffe, R. L. (2013). "A "kilonova" associated with the short-duration γ-ray burst GRB 130603B". Nature. 500 (7464): 547–9. arXiv:1306.4971. Bibcode:2013Natur.500..547T. doi:10.1038/nature12505. PMID 23912055. S2CID 205235329.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search