Noise temperature

In electronics, noise temperature is one way of expressing the level of available noise power introduced by a component or source. The power spectral density of the noise is expressed in terms of the temperature (in kelvins) that would produce that level of Johnson–Nyquist noise, thus:

where:

  • is the noise power (in W, watts)
  • is the total bandwidth (Hz, hertz) over which that noise power is measured
  • is the Boltzmann constant (1.381×10−23 J/K, joules per kelvin)
  • is the noise temperature (K, kelvin)

Thus the noise temperature is proportional to the power spectral density of the noise, . That is the power that would be absorbed from the component or source by a matched load. Noise temperature is generally a function of frequency, unlike that of an ideal resistor which is simply equal to the actual temperature of the resistor at all frequencies.


© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search