Nutrient pollution

Nutrient pollution caused by Surface runoff of soil and fertilizer during a rain storm

Nutrient pollution is a form of water pollution caused by too many nutrients entering the water. It is a primary cause of eutrophication of surface waters (lakes, rivers and coastal waters), in which excess nutrients, usually nitrogen or phosphorus, stimulate algal growth.[1] Sources of nutrient pollution include surface runoff from farms, waste from septic tanks and feedlots, and emissions from burning fuels. Raw sewage, which is rich in nutrients, also contributes to the issue when dumped in water bodies. Excess nitrogen causes environmental problems such as harmful algal blooms, hypoxia, acid rain, nitrogen saturation in forests, and climate change.[2]

Agricultural production relies heavily on the use of natural and synthetic fertilizers, which often contain high levels of nitrogen, phosphorus and potassium.[3][4] When nitrogen and phosphorus are not fully used by the growing plants, they can be lost from the farm fields and negatively impact air and downstream water quality.[5] These nutrients can end up in aquatic ecosystems and contribute to increased eutrophication.[6]

To reduce nutrient pollution, several strategies can be implemented. These include installing buffer zones of vegetation around farms or artificial wetlands to absorb excess nutrients. Additionally, better wastewater treatment and reducing sewage dumping can help limit nutrient discharge into water systems. Finally, countries can create a permit system under the polluter pays principle.

  1. ^ Walters, Arlene, ed. (2016). Nutrient Pollution From Agricultural Production: Overview, Management and a Study of Chesapeake Bay. Hauppauge, NY: Nova Science Publishers. ISBN 978-1-63485-188-6.
  2. ^ "Reactive Nitrogen in the United States: An Analysis of Inputs, Flows, Consequences, and Management Options, A Report of the Science Advisory Board" (PDF). Washington, DC: US Environmental Protection Agency (EPA). EPA-SAB-11-013. Archived from the original (PDF) on February 19, 2013.
  3. ^ "Fertilizer 101: The Big Three―Nitrogen, Phosphorus and Potassium". Arlington, VA: The Fertilizer Institute. 2014-05-07. Archived from the original on 2023-06-05. Retrieved 2021-08-21.
  4. ^ Carpenter, S. R.; Caraco, N. F.; Correll, D. L.; Howarth, R. W.; Sharpley, A. N.; Smith, V. H. (August 1998). "Nonpoint Pollution of Surface Waters with Phosphorus and Nitrogen". Ecological Applications. 8 (3): 559. doi:10.2307/2641247. hdl:1813/60811. JSTOR 2641247.
  5. ^ "The Sources and Solutions: Agriculture". Nutrient Pollution. EPA. 2021-11-04.
  6. ^ Huang, Jing; Xu, Chang-chun; Ridoutt, Bradley; Wang, Xue-chun; Ren, Pin-an (August 2017). "Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China". Journal of Cleaner Production. 159: 171–179. Bibcode:2017JCPro.159..171H. doi:10.1016/j.jclepro.2017.05.008.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search