Optical computing

Optical computing or photonic computing uses light waves produced by lasers or incoherent sources for data processing, data storage or data communication for computing. For decades, photons have shown promise to enable a higher bandwidth than the electrons used in conventional computers (see optical fibers).

Most research projects focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. This approach appears to offer the best short-term prospects for commercial optical computing, since optical components could be integrated into traditional computers to produce an optical-electronic hybrid. However, optoelectronic devices consume 30% of their energy converting electronic energy into photons and back; this conversion also slows the transmission of messages. All-optical computers eliminate the need for optical-electrical-optical (OEO) conversions, thus reducing electrical power consumption.[1]

Application-specific devices, such as synthetic-aperture radar (SAR) and optical correlators, have been designed to use the principles of optical computing. Correlators can be used, for example, to detect and track objects,[2] and to classify serial time-domain optical data.[3]

  1. ^ Nolte, D.D. (2001). Mind at Light Speed: A New Kind of Intelligence. Simon and Schuster. p. 34. ISBN 978-0-7432-0501-6.
  2. ^ Feitelson, Dror G. (1988). "Chapter 3: Optical Image and Signal Processing". Optical Computing: A Survey for Computer Scientists. Cambridge, Massachusetts: MIT Press. ISBN 978-0-262-06112-4.
  3. ^ Kim, S. K.; Goda, K.; Fard, A. M.; Jalali, B. (2011). "Optical time-domain analog pattern correlator for high-speed real-time image recognition". Optics Letters. 36 (2): 220–2. Bibcode:2011OptL...36..220K. doi:10.1364/ol.36.000220. PMID 21263506. S2CID 15492810.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search