Organ-on-a-chip

An organ-on-a-chip (OOC) is a multi-channel 3-D microfluidic cell culture, integrated circuit (chip) that simulates the activities, mechanics and physiological response of an entire organ or an organ system.[1][2] It constitutes the subject matter of significant biomedical engineering research, more precisely in bio-MEMS. The convergence of labs-on-chips (LOCs) and cell biology has permitted the study of human physiology in an organ-specific context. By acting as a more sophisticated in vitro approximation of complex tissues than standard cell culture, they provide the potential as an alternative to animal models for drug development and toxin testing.

Although multiple publications claim to have translated organ functions onto this interface, the development of these microfluidic applications is still in its infancy. Organs-on-chips vary in design and approach between different researchers. Organs that have been simulated by microfluidic devices include brain, lung, heart, kidney, liver, prostate, vessel (artery), skin, bone, cartilage and more.[3]

A limitation of the early organ-on-a-chip approach is that simulation of an isolated organ may miss significant biological phenomena that occur in the body's complex network of physiological processes, and that this oversimplification limits the inferences that can be drawn. Many aspects of subsequent microphysiometry aim to address these constraints by modeling more sophisticated physiological responses under accurately simulated conditions via microfabrication, microelectronics and microfluidics.[4]

The development of organ chips has enabled the study of the complex pathophysiology of human viral infections. An example is the liver chip platform that has enabled studies of viral hepatitis.[5]

  1. ^ Zhang, Boyang; Korolj, Anastasia; Lai, Benjamin Fook Lun; Radisic, Milica (2018-08-01). "Advances in organ-on-a-chip engineering". Nature Reviews Materials. 3 (8): 257–278. Bibcode:2018NatRM...3..257Z. doi:10.1038/s41578-018-0034-7. ISSN 2058-8437. S2CID 69815527.
  2. ^ Bhatia, Sangeeta N; Ingber, Donald E (2014). "Microfluidic organs-on-chips". Nature Biotechnology. 32 (8): 760–772. doi:10.1038/nbt.2989. ISSN 1087-0156. PMID 25093883. S2CID 988255.
  3. ^ Ingber, Donald E. (2022-03-25). "Human organs-on-chips for disease modelling, drug development and personalized medicine". Nature Reviews Genetics. 23 (8). Springer Science and Business Media LLC: 467–491. doi:10.1038/s41576-022-00466-9. ISSN 1471-0056. PMC 8951665. PMID 35338360.
  4. ^ Wiest, J (January 2022). "Systems engineering of microphysiometry". Organs-on-a-Chip. 4: 100016. doi:10.1016/j.ooc.2022.100016. S2CID 245970804.
  5. ^ Tang H, Abouleila Y, Si L, Ortega-Prieto AM, Mummery CL, Ingber DE, Mashaghi A (November 2020). "Human Organs-on-Chips for Virology". Trends Microbiol. 28 (11): 934–946. doi:10.1016/j.tim.2020.06.005. PMC 7357975. PMID 32674988.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search