Penicillin

Penicillin
Penicillin core structure, where "R" is the variable group
Clinical data
AHFS/Drugs.comMicromedex Detailed Consumer Information
Routes of
administration
Intravenous, intramuscular, by mouth
ATC code
Legal status
Legal status
  • In general: ℞ (Prescription only)
Pharmacokinetic data
MetabolismLiver
Elimination half-lifeBetween 0.5 and 56 hours
ExcretionKidneys

Penicillins (P, PCN or PEN) are a group of β-lactam antibiotics originally obtained from Penicillium moulds, principally P. chrysogenum and P. rubens. Most penicillins in clinical use are synthesised by P. chrysogenum using deep tank fermentation[2] and then purified.[3][4] A number of natural penicillins have been discovered, but only two purified compounds are in clinical use: penicillin G (intramuscular or intravenous use) and penicillin V (given by mouth). Penicillins were among the first medications to be effective against many bacterial infections caused by staphylococci and streptococci. They are still widely used today for different bacterial infections, though many types of bacteria have developed resistance following extensive use.

Ten percent of the population claims penicillin allergies but because the frequency of positive skin test results decreases by 10% with each year of avoidance, 90% of these patients can eventually tolerate penicillin. Additionally, those with penicillin allergies can usually tolerate cephalosporins (another group of β-lactam) because the immunoglobulin E (IgE) cross-reactivity is only 3%.[5]

Penicillin was discovered in 1928 by Scottish scientist Alexander Fleming as a crude extract of P. rubens.[6] Fleming's student Cecil George Paine was the first to successfully use penicillin to treat eye infection (neonatal conjunctivitis) in 1930. The purified compound (penicillin F) was isolated in 1940 by a research team led by Howard Florey and Ernst Boris Chain at the University of Oxford. Fleming first used the purified penicillin to treat streptococcal meningitis in 1942.[7] The 1945 Nobel Prize in Physiology or Medicine was shared by Chain, Fleming, and Florey.

Several semisynthetic penicillins are effective against a broader spectrum of bacteria: these include the antistaphylococcal penicillins, aminopenicillins, and antipseudomonal penicillins.

  1. ^ Walling AD (September 15, 2006). "Tips from Other Journals – Antibiotic Use During Pregnancy and Lactation". American Family Physician. 74 (6): 1035. Archived from the original on December 15, 2016. Retrieved September 25, 2015.
  2. ^ "American Chemical Society National Historic Chemical Landmarks. Penicillin Production through Deep-tank Fermentation". American Chemical Society. 2008-06-12.
  3. ^ Barreiro C, García-Estrada C (April 2019). "Proteomics and Penicillium chrysogenum: Unveiling the secrets behind penicillin production". Journal of Proteomics. 198. Elsevier: 119–131. doi:10.1016/j.jprot.2018.11.006. PMID 30414515. S2CID 53250114.
  4. ^ Meštrović T (2018-08-29). "Penicillin Production". News Medical Life Sciences.
  5. ^ Wanat M, Anthierens S, Butler CC, Savic L, Savic S, Pavitt SH, et al. (June 2021). "Management of penicillin allergy in primary care: a qualitative study with patients and primary care physicians". BMC Family Practice. 22 (1): 112. doi:10.1186/s12875-021-01465-1. PMC 8194168. PMID 34116641.
  6. ^ Lalchhandama K (2020). "Reappraising Fleming's snot and mould". Science Vision. 20 (1): 29–42. doi:10.33493/scivis.20.01.03.
  7. ^ Fleming A (1943). "Streptococcal Meningitis treated With Penicillin". The Lancet. 242 (6267): 434–438. doi:10.1016/S0140-6736(00)87452-8.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search