Photoemission electron microscopy

Photoemission electron microscopy (PEEM, also called photoelectron microscopy, PEM) is a type of electron microscopy that utilizes local variations in electron emission to generate image contrast.[citation needed] The excitation is usually produced by ultraviolet light, synchrotron radiation or X-ray sources. PEEM measures the coefficient indirectly by collecting the emitted secondary electrons generated in the electron cascade that follows the creation of the primary core hole in the absorption process. PEEM is a surface sensitive technique because the emitted electrons originate from a shallow layer. In physics, this technique is referred to as PEEM, which goes together naturally with low-energy electron diffraction (LEED), and low-energy electron microscopy (LEEM). In biology, it is called photoelectron microscopy (PEM), which fits with photoelectron spectroscopy (PES), transmission electron microscopy (TEM),[1] and scanning electron microscopy (SEM).

  1. ^ Buseck, Peter; Cowley, John; Eyring, Leroy (1988). High-Resolution Transmission Electron Microscopy and Associated Techniques. Oxford University Press.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search