Piezotronics

Working mechanism for piezotronic devices with two ends fixed with electrodes on a flexible substrate. This asymmetric tuning of the Schottky barrier height is the piezotronic effect.

Piezotronics effect is using the piezoelectric potential (piezopotential) created in materials with piezoelectricity as a “gate” voltage to tune/control the charge carrier transport properties for fabricating new devices.

Neil A Downie showed how simple it was to build simple demonstrations on a macro-scale using a sandwich of piezoelectric material and carbon piezoresistive material to make an FET-like amplifying device and put it in a book of science projects for students in 2006.[1]

The fundamental principle of piezotronics was introduced by Prof. Zhong Lin Wang at Georgia Institute of Technology in 2007.[2] From 2006, a series of electronic devices have been demonstrated based on this effect, including piezopotential gated field-effect transistor,[3] piezopotential gated diode,[4] strain sensors,[5] force/flow sensors,[6] hybrid field-effect transistor,[7] piezotronic logic gates,[8] electromechanical memories,[9] etc.

Piezotronic devices are regarded as a new semiconductor-device category. Piezotronics is likely to have important applications in sensor, human-silicon technology interfacing, MEMS, nanorobotics and active flexible electronics.

  1. ^ Downie, Neil A (2006). Exploding Disk Cannons, Slimemobiles and 32 Other Projects for Saturday Science. Johns Hopkins University Press. pp. 133–145. ISBN 0-8018-8506-X.
  2. ^ [1] Zhong Lin Wang, “Nanopiezotronics”, Advanced Materials, 2007, 19, 889-892.
  3. ^ Wang, Xudong; Zhou, Jun; Song, Jinhui; Liu, Jin; Xu, Ningsheng; Lin Wang, Zhong (2006). "Piezoelectric Field Effect Transistor and Nanoforce Sensor Based on a Single ZnO Nanowire" (PDF). Nano Letters. 6 (12): 2768–2772. Bibcode:2006NanoL...6.2768W. doi:10.1021/nl061802g. PMID 17163703.
  4. ^ He, J. H.; Hsin, C. L.; Liu, J.; Chen, L. J.; Wang, Z. L. (2007). "Piezoelectric Gated Diode of a Single ZnO Nanowire" (PDF). Advanced Materials. 19 (6): 781–784. doi:10.1002/adma.200601908.
  5. ^ [2] Jun Zhou, Yudong Gu, Peng Fei, Wenjie Mai, Yifan Gao, Rusen Yang, Gang Bao and Zhong Lin Wang, “Flexible Piezotronic Strain Sensor”, Nano Letters, 2008, 8, 3035-3040.
  6. ^ [3] Peng Fei, Ping-Hung Yeh, Jun Zhou, Sheng Xu, Yifan Gao, Jinhui Song, Yudong Gu, Yanyi Huang and Zhong Lin Wang, “Piezoelectric Potential Gated Field-Effect Transistor Based on a Free-Standing ZnO Wire”, Nano Letters, 2009, 9, 3435-3439.
  7. ^ [4] Weihua Liu, Minbaek Lee, Lei Ding, Jie Liu, and Zhong Lin Wang, “Piezopotential Gated Nanowire-Nanotube Hybrid Field-Effect Transistor”, Nano Letters, 2010, 10, 3084-3089.
  8. ^ [5] Wenzhuo Wu, Yaguang Wei, Zhong Lin Wang, “Strain-Gated Piezotronic Logic Nanodevices”, Advanced materials, 2010, 22, 4711-4715.
  9. ^ [6] Wenzhuo Wu and Zhong Lin Wang, “Piezotronic Nanowire-Based Resistive Switches As Programmable Electromechanical Memories”, Nano Letters, 2011, 11, 2779–2785.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search