Polyakov action

In physics, the Polyakov action is an action of the two-dimensional conformal field theory describing the worldsheet of a string in string theory. It was introduced by Stanley Deser and Bruno Zumino and independently by L. Brink, P. Di Vecchia and P. S. Howe in 1976,[1][2] and has become associated with Alexander Polyakov after he made use of it in quantizing the string in 1981.[3] The action reads:

where is the string tension, is the metric of the target manifold, is the worldsheet metric, its inverse, and is the determinant of . The metric signature is chosen such that timelike directions are + and the spacelike directions are −. The spacelike worldsheet coordinate is called , whereas the timelike worldsheet coordinate is called . This is also known as the nonlinear sigma model.[4]

The Polyakov action must be supplemented by the Liouville action to describe string fluctuations.

  1. ^ Deser, S.; Zumino, B. (1976). "A Complete Action for the Spinning String". Phys. Lett. B. 65 (4): 369–373. doi:10.1016/0370-2693(76)90245-8.
  2. ^ Brink, L.; Di Vecchia, P.; Howe, P. (1976). "A locally supersymmetric and reparametrization invariant action for the spinning string". Physics Letters B. 65 (5): 471–474. doi:10.1016/0370-2693(76)90445-7.
  3. ^ Polyakov, A. M. (1981). "Quantum geometry of bosonic strings". Physics Letters B. 103 (3): 207–210. doi:10.1016/0370-2693(81)90743-7.
  4. ^ Friedan, D. (1980). "Nonlinear Models in 2+ε Dimensions" (PDF). Physical Review Letters. 45 (13): 1057–1060. Bibcode:1980PhRvL..45.1057F. doi:10.1103/PhysRevLett.45.1057.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search