This article is about representing a non-negative polynomial as sum of squares of polynomials. For representing a polynomial as a sum of squares of rational functions, see Hilbert's seventeenth problem. For the sum of squares of consecutive integers, see square pyramidal number. For representing an integer as a sum of squares of integers, see Lagrange's four-square theorem.
In mathematics, a form (i.e. a homogeneous polynomial) h(x) of degree 2m in the realn-dimensional vector x is sum of squares of forms (SOS) if and only if there exist forms of degree m such that
Every form that is SOS is also a positive polynomial, and although the converse is not always true, Hilbert proved that for n = 2, 2m = 2, or n = 3 and 2m = 4 a form is SOS if and only if it is positive.[1] The same is also valid for the analog problem on positive symmetric forms.[2][3]
Although not every form can be represented as SOS, explicit sufficient conditions for a form to be SOS have been found.[4][5] Moreover, every real nonnegative form can be approximated as closely as desired (in the -norm of its coefficient vector) by a sequence of forms that are SOS.[6]