In signal processing, a polyphase matrix is a matrix whose elements are filter masks. It represents a filter bank as it is used in sub-band coders alias discrete wavelet transforms.[1]
If
are two filters, then one level the traditional wavelet transform maps an input signal
to two output signals
, each of the half length:

Note, that the dot means polynomial multiplication; i.e., convolution and
means downsampling.
If the above formula is implemented directly, you will compute values that are subsequently flushed by the down-sampling. You can avoid their computation by splitting the filters and the signal into even and odd indexed values before the wavelet transformation:

The arrows
and
denote left and right shifting, respectively. They shall have the same precedence like convolution, because they are in fact convolutions with a shifted discrete delta impulse.

The wavelet transformation reformulated to the split filters is:

This can be written as matrix-vector-multiplication

This matrix
is the polyphase matrix.
Of course, a polyphase matrix can have any size, it need not to have square shape. That is, the principle scales well to any filterbanks, multiwavelets, wavelet transforms based on fractional refinements.